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Abstract— Numerical methods for solving 
problems with differential equations are generally 
based on the local approximate representation of 
the solution using elementary functions, usually 
polynomials.  Historically, and depending on the 
mathematical tools used, two main methods are 
distinguished: the finite difference method and the 
finite element method. The finite difference 
method is based on the local replacement of 
derivatives with differences. In this work, we 
provide a general overview of the analytical and 
numerical solutions of the two-dimensional linear 
convection-diffusion equation, using finite 
difference methods. The well-known Crank-
Nicolson method, very efficient for standard 
equation case, is adopted and implemented for 
the convection-diffusion equation, considering a 
simple case with constant coefficients. The 
corresponding numerical results are presented. 
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I.  INTRODUCTION 

We formulate the convection-difusion equation in its 
linear form (its simplest form).Find the function u(x,y, t) 
that satisfies the differential equation 

𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝛼

𝜕2𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+ 𝛼

𝜕2𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦2

− 𝛽
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥
− 𝛽

𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦
     

 𝐷 = [0, 𝑙]𝑥[0, 𝑙]   , 𝑡 > 0       

with initial condition and boundary conditions 
respectively 

𝑢|𝐷 = 0   , 𝑡 > 0 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),        0 < 𝑥 < 𝑙 , 0 < 𝑦 < 𝑙 
 

The convection-diffusion equation well be simplified 
with the notation 

𝜕𝑢

𝜕𝑡
= 𝛼𝛻2𝑢 − 𝛽𝛻𝑢 

Where α  is the diffusion coefficient and β is colled 
convection coefficient. 
The convection-diffusion equation, also known as the 
advection-diffusion equation  has been used to 
describe many different physical processes. The 
convection-diffusion equation is employed as a model 
for heat transfer and the dynamics of fluids and 
gasses. 
The derivation of the convection-diffusion equation 
may rely on the principle of superposition, whereby 
convection and diffusion processes can be treated 
simultaneously if they are independent. In this study, 
we focus specifically on the case where the 
convection and diffusion processes are assumed to 
be independent. If this assumption is not made, the 
resulting problem is significantly more complex to 
analyze. 
 

II. ANALYTICAL SOLUTION OF THE CONVECTION-
DIFFUSION EQUATION 

In this paper, we have considered the linear 
convection-diffusion equation with constant 
coefficients, as given below 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 𝛼

𝜕2𝑢

𝜕𝑦2
− 𝛽

𝜕𝑢

𝜕𝑥
− 𝛽

𝜕𝑢

𝜕𝑦
    

 𝐷 = [0,1]𝑥[0,1]   , 𝑡 > 0                  (1) 

with initial condition and boundary conditions 
respectively, 

𝑢|𝐷 = 0  , 𝑡 > 0 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) ,    0 < 𝑥 < 1 , 0 < 𝑦 < 1               (2) 

The solution is sought in the form 

𝑢(𝑥, 𝑦, 𝑡) = 𝑋(𝑥)𝑌(𝑦)𝑇(𝑡)                  (≢ 0)                    (3) 

We substitute the solution into equation (1) 

T′XY = (αX"-βX')YT+X(αY" − βY′)T 

Divide both sides by XYT 

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 11 Issue 9, September - 2025 

www.jmess.org 

JMESSP13421011 5807 

𝑇′

𝑇
=
(𝛼𝑋"-βX')

𝑋
+
(𝛼𝑌" − 𝛽𝑌′)

𝑌
= −𝜆 

From the above equation, we derive three 
equations. 

The first equation is for T(t) 

𝑇: 
𝑇′

𝑇
= −𝜆          𝑜𝑟       𝑇′ + 𝜆𝑇 = 0                                  (4) 

The solution of this first-order differential equation is  

𝑇(𝑡) = 𝑒−𝜆𝑡 

The other two equations obtained for X(x) and Y(y) 
have the same solution with different constants, so it is 
sufficient to solve only one of them. The equations for 
the variable x and the variable  y are 

(𝛼𝑋"-βX')

𝑋
+
(𝛼𝑌" − 𝛽𝑌′)

𝑌
= −𝜆 

(𝛼𝑌" − 𝛽𝑌′)

𝑌
+ 𝜆 = −

(𝛼𝑋"-βX')

𝑋
= 𝜇 

𝑋: 𝛼𝑋" − 𝛽𝑋'=μX 
𝑋: 𝛼𝑋" − 𝛽𝑋'-μX=0           X(0)=X(1)=0           (5)  

𝑌: (𝛼𝑌" − 𝛽𝑌′) + 𝜆𝑌 = 𝜇𝑌 
𝑌: (𝛼𝑌" − 𝛽𝑌′) + (𝜆 − 𝜇)𝑌 = 0  𝑌(0) = 𝑌(1) = 0        (6) 
 
Let us now solve (5) 
 

𝑋: 𝛼𝑋" − 𝛽𝑋'-μX=0           X(0)=X(1)=0 
 
 Its characteristic equation is 

𝛼𝑘2 − 𝛽𝑘 − 𝜇 = 0                𝐷 = 𝛽2 + 4𝛼𝜇 
The roots of this equation are 

𝑘1 =
𝛽−√𝐷

2𝛼
  and 𝑘2 =

𝛽+√𝐷

2𝛼
   

 
Solving the characteristic equation yields three 
possible forms for the solution of X(x) 
 
𝑋(𝑥)

=

{
 
 

 
 𝐶1𝑒

𝑘1𝑥 + 𝐶2𝑒
𝑘2𝑥                                           𝑓𝑜𝑟    𝐷 > 0

(𝐸𝑥 + 𝐹)𝑒𝑟𝑥                                                    𝑓𝑜𝑟      𝐷 = 0

𝑒
𝛽
2𝛼
𝑥 [𝐴𝑠𝑖𝑛 (

−√𝐷

2𝛼
𝑥) + 𝐵𝑐𝑜𝑠 (

−√𝐷

2𝛼
𝑥)]    𝑓𝑜𝑟  𝐷 < 0

 

 
The only equation that satisfies the Dirichlet boundary 
conditions is 
 

𝑋(𝑥) = 𝑒
𝛽

2𝛼
𝑥 [𝐴𝑠𝑖𝑛 (

−√𝐷

2𝛼
𝑥) + 𝐵𝑐𝑜𝑠 (

−√𝐷

2𝛼
𝑥)]              (7) 

 
Where D<0  and the roots are imaginary. 
We apply the initial condition in (7) 

𝑋𝑚(𝑥) = 𝑒
𝛽
2𝛼
𝑥
𝑠𝑖𝑛(𝑚𝑥)            𝑚 = 1,2,3, …  

𝑈𝑚 = −𝛼𝑚2𝜋𝜋2 −
𝛽2

4𝛼
 

𝑋(𝑥) = ∑ 𝐴𝑚

∞

𝑚=1

𝑒
𝛽
2𝛼
𝑥 𝑠𝑖𝑛(𝑚𝜋𝑥) 

𝐴𝑚 = 2∫𝑓(𝑥)𝑒−
𝛽
2𝛼
𝑥 𝑠𝑖𝑛(𝑚𝜋𝑥)

1

0

𝑑𝑥 

Similarly, the solution can be written for Y(y) 
 

𝑌(𝑦) = ∑𝐴𝑛

∞

𝑛=1

𝑒
𝛽
2𝛼
𝑦 𝑠𝑖𝑛(𝑛𝜋𝑦) 

and  

X(x)Y(y) = ∑∑ 

∞

n=1

Amn

∞

m=1

e
β
2α
x e

β
2α
ysin(mπx) sin(nπy) 

𝐴𝑚𝑛

= 4∫∫  

1

0

𝑓(𝑥, 𝑦)𝑒−
𝛽
2𝛼
𝑥 𝑒−

𝛽
2𝛼
𝑦𝑠𝑖𝑛(𝑚𝜋𝑥) 𝑠𝑖𝑛(𝑛𝜋𝑦)

1

0

𝑑𝑥𝑑𝑦 

The solution  is 
 
𝑢(𝑥, 𝑦, 𝑡)

= ∑∑ 

∞

𝑛=1

𝐴𝑚𝑛

∞

𝑚=1

𝑒
(
𝛽
2𝛼
𝑥+

𝛽
2𝛼
𝑦+

𝛽2

2𝛼)
𝑡
𝑒
𝛽
2𝛼
(𝑥+𝑦)𝑠𝑖𝑛(𝑚𝜋𝑥) 𝑠𝑖𝑛(𝑛𝜋𝑦) 

 
And  𝐴𝑚𝑛   is 

𝐴𝑚𝑛

= 4∫∫  

1

0

𝑓(𝑥, 𝑦)𝑒−
𝛽
2𝛼
𝑥 𝑒−

𝛽
2𝛼
𝑦𝑠𝑖𝑛(𝑚𝜋𝑥) 𝑠𝑖𝑛(𝑛𝜋𝑦)

1

0

𝑑𝑥𝑑𝑦 

 

III. AN ANALYTICAL EXCEMPLE 

In the following, we have presented the results of the 
analytical solution of the above equation with simple 
initial and boundary conditions. The results are 
presented graphically using Matlab. 

𝜕𝑢

𝜕𝑡
= 0.5

𝜕2𝑢

𝜕𝑥2
+ 0.5

𝜕2𝑢

𝜕𝑦2
− 5

𝜕𝑢

𝜕𝑥
− 5

𝜕𝑢

𝜕𝑦
 

u(x, y, 0) = f(x, y) = sin (πx)sin (πy) 

Fig. 1. The eigenfunctions for: m=1,n=1; 
m=2,n=1;m=1,n=2;m=2,n=2. 
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Fig. 2. The analytical solution at: t=0, t=0.05, t=0.09, t=0.12. 

IV. A CRANK-NICOLSON TYPE METHOD FOR THE 

SOLUTION OF LINEAR CONVECTION-DIFFUSION EQUATION 

In this part we have adopted and implemented the 
Crank-Nicolson method for the solution of linear 
convection-diffusion equation in two dinmnsions. In 
several of our earlier works, cited in the references, 
we have addressed finite difference methods, with 
particular emphasis on the Crank–Nicolson scheme. 

Consider the problem below (1) - (2) 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 𝛼

𝜕2𝑢

𝜕𝑦2
− 𝛽

𝜕𝑢

𝜕𝑥
− 𝛽

𝜕𝑢

𝜕𝑦
   

𝐷 = [0,1]𝑥[0,1]  𝑡 > 0        

with initial condition and boundary conditions 
respectively 

𝑢|𝐷 = 0 , 𝑡 > 0 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) ,    0 < 𝑥 < 1 , 0 < 𝑦 < 1 

As a first step, the computational domain is 

discretized with respect to the independent variables 

x,y,t. 

𝑢𝑚,𝑛
𝑗

= 𝑢(𝑚ℎ, 𝑛𝑘, 𝑗𝑙)   where  ℎ = ∆𝑥, 𝑘 = ∆𝑦 and 𝑙 = ∆𝑡 

Crank-Nicolson type method can be written 

𝑢𝑚,𝑛
𝑗+1

− 𝑢𝑚,𝑛
𝑗

𝑙
=
𝛼

2
[[
𝑢𝑚+1,𝑛
𝑗

− 2𝑢𝑚,𝑛
𝑗

+ 𝑢𝑚−1,𝑛
𝑗

ℎ2

+
𝑢𝑚+1,𝑛
𝑗+1

− 2𝑢𝑚,𝑛
𝑗+1

+ 𝑢𝑚−1,𝑛
𝑗+1

ℎ2
]

+ [
𝑢𝑚,𝑛+1
𝑗

− 2𝑢𝑚.𝑛
𝑗

+ 𝑢𝑚,𝑛−1
𝑗

𝑘2

+
𝑢𝑚,𝑛+1
𝑗+1

− 2𝑢𝑚,𝑛
𝑗+1

+ 𝑢𝑚,𝑛−1
𝑗+1

𝑘2
]] 

−
𝛽

2
[[
𝑢𝑚+1,𝑛
𝑗

− 𝑢𝑚−1,𝑛
𝑗

2ℎ
+
𝑢𝑚+1,𝑛
𝑗+1

− 𝑢𝑚−1,𝑛
𝑗+1

2ℎ
]

+ [
𝑢𝑚,𝑛+1
𝑗

− 𝑢𝑚,𝑛−1
𝑗

2𝑘

+
𝑢𝑚,𝑛+1
𝑗+1

− 𝑢𝑚,𝑛−1
𝑗+1

2𝑘
]] 

After some algebraic computation we receive 

𝑢𝑚,𝑛
𝑗+1

− 𝐴𝑥[𝑢𝑚+1,𝑛
𝑗+1

− 2𝑢𝑚,𝑛
𝑗+1

+ 𝑢𝑚−1,𝑛
𝑗+1

]

− 𝐴𝑦[𝑢𝑚,𝑛+1
𝑗+1

− 2𝑢𝑚.𝑛
𝑗+1

+ 𝑢𝑚,𝑛−1
𝑗+1

]

+ 𝐵𝑥[𝑢𝑚+1,𝑛
𝑗+1

− 𝑢𝑚−1,𝑛
𝑗+1

]

+ 𝐵𝑦[𝑢𝑚,𝑛+1
𝑗+1

− 𝑢𝑚,𝑛−1
𝑗+1

]

= 𝑢𝑚,𝑛
𝑗

+ 𝐴𝑥[𝑢𝑚+1,𝑛
𝑗

− 2𝑢𝑚,𝑛
𝑗

+ 𝑢𝑚−1,𝑛
𝑗

]

+ 𝐴𝑦[𝑢𝑚,𝑛+1
𝑗

− 2𝑢𝑚.𝑛
𝑗

+ 𝑢𝑚,𝑛−1
𝑗

]

− 𝐵𝑥[𝑢𝑚+1,𝑛
𝑗

− 𝑢𝑚−1,𝑛
𝑗

]

− 𝐵𝑦[𝑢𝑚,𝑛+1
𝑗

− 𝑢𝑚,𝑛−1
𝑗

] 

Where 𝐴𝑥 =
𝛼𝑙

2ℎ2
  , 𝐴𝑦 =

𝛼𝑙

2𝑘2  
 ,   𝐵𝑥 =

𝛽𝑙

4ℎ
 and   𝐵𝑦 =

𝛽𝑙

4𝑘
      

the solution will be stable if the coefficients are all 

positive. 

The last can be written in matrix form as 

(𝑀𝑥𝑦)𝑢
𝑗+1 = (𝑁𝑥𝑦)𝑢

𝑗 

𝑀𝑥𝑦 = (𝐼⨂𝑀𝑥 +𝑀𝑦⨂𝐼) 

The error is second order in space and time, O(k
2
 + 

h
2
+l

2
). 

 

 

V. A NUMERICAL EXAMPLE 

 

To illustrate the Crank–Nicolson method, we consider 

the same example as that used in the analytical 

solution, subject to identical initial conditions. At the 

outset, relatively small discretization step sizes are 

chosen for ℎ, k and l. 

 Specifically, we take n=45 which yields  

h = k =
1

45 + 1
= 0.0217  and l = 0.0001 

The numerical results are presented graphically in Fig. 

3. It is observed that the analytical and numerical 

solutions yield approximately the same results. 

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 11 Issue 9, September - 2025 

www.jmess.org 

JMESSP13421011 5809 

 

Fig. 3. The numerical solutions using the Crank-Nicolson 

method. 

VI. CONCLUSIONS 

Many applied mathematics problems lead to solving 
ordinary differential equations  with boundary 
conditions or even partial differential equations . Since 
exact solutions of these equations are difficult or 
almost impossible to obtain, finding approximate 
methods for these equations provides significant 
ease. The numerical solution of differential problems 
involves various difficulties, such as challenges during 
algebraic procedures or problems related to 
discretizing the integration domain. Another issue is 
the stability and convergence of the numerical method 
used. Finite difference methods have better 
characteristics and are stable, but generally require 
more effort and mental resources for their practical 
implementation. The Crank–Nicolson method is 
accurate and unconditionally stable for solving  linear 
convection-diffusion equation in two dinmnsions. The 
analytical and numerical solutions yield approximately 
the same results. 
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