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Abstract—Expressive singing voice synthesis 
(SVS) seeks human-like control over timing, 
dynamics, and pitch. Current MIDI-to-singing 
systems (e.g., UTAU, Synthesizer V) often produce 
mechanical outputs due to limited 
expressiveness. We propose a rule-based 
framework that automates melodic accent 
modeling via pitch interval analysis and two-part 
harmony generation using triadic chords in UTAU. 
This lightweight framework significantly improves 
naturalness (mean score: 5.8 vs. 3.2 baseline) and 
emotional impact in both solo and duet synthesis, 
with potential for multi-voice extensions. 
Listening tests validate its effectiveness, offering 
a scalable, resource-efficient alternative to neural-
based SVS for engineering applications. 
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I.  INTRODUCTION  

Singing voice synthesis (SVS) produces realistic 
vocal performances from digital inputs, with precise 
control over pitch, timing, and dynamics. MIDI-to-
singing synthesis, a subset of SVS, converts MIDI data 
(notes, velocity, duration) into vocals using tools like 
UTAU and Synthesizer V. However, these systems 
often prioritize pitch and timing accuracy over 
expressive phrasing, yielding mechanical outputs. Key 
limitations include the lack of perceptual melodic 
accent models and reliance on manual harmonization 
for ensemble synthesis. 

We propose a rule-based framework for UTAU that 
automates melodic accent modeling and two-part 
harmony generation (melody and lower voice) using 
pitch intervals and triadic chords. This lightweight 
approach enhances naturalness and emotional impact 
in solo and duet synthesis. The method also shows 
potential for scalable extension to full multi-voice (e.g., 
SATB) arrangements. A demonstration is available 
online [1] 

The paper is organized as follows: Section 2 
reviews related work, Section 3 details the framework, 
Section 4 describes experiments, Section 5 discusses 
results, and Section 6 concludes with contributions and 
future directions. 

 

II. RELATED WORK 

Singing voice synthesis (SVS) has evolved 
significantly from early rule-based systems to 
contemporary neural-network-driven models. Early 
systems such as CHATR and MBROLA utilized unit 
selection or diphone concatenation methods, 
producing intelligible but monotonous singing voices 
[2]. These approaches laid the groundwork for later 
statistical parametric models such as HMM-based SVS 
(e.g., VOCALOID2), which introduced more flexible 
pitch and timing control but still lacked expressiveness 
comparable to human singing [3]. 

With the introduction of user-friendly platforms like 
UTAU, Synthesizer V, and NEUTRINO, the 
accessibility and quality of SVS systems improved 
considerably. These tools typically transform MIDI and 
phoneme inputs into synthesized vocal outputs using 
pre-trained voicebanks [4]. Although such systems can 
produce high-fidelity vocals, their expressiveness often 
relies on user-defined parameter curves (e.g., pitch 
bends, vibrato depth, and volume envelopes), making 
it labor-intensive to achieve natural phrasing and 
emotional nuance [5]. 

To address this, research in expressive SVS has 
expanded toward modeling human-like performance 
features. For example, Kim et al. [6] proposed a deep 
learning-based system to learn expressive timing and 
dynamics from real singing data, while Zhang et al. [7] 
applied variational autoencoders to capture different 
emotional singing styles. These systems represent 
substantial progress but generally focus on solo voice 
performance and lack comprehensive modeling of 
melodic accents, which are critical in shaping musical 
phrasing. 

Melodic accents refer to the perceptual prominence 
of notes within a melodic line, influenced by rhythmic 
position, pitch contour, and dynamic emphasis [8]. 
Despite their importance in musical expression, few 
SVS models explicitly incorporate melodic accent 
features. Instead, most prioritize pitch and timing 
accuracy, often resulting in flat or mechanical-
sounding outputs. Recent studies in related domains 
(e.g., expressive piano or violin synthesis) have shown 
that incorporating accent structures can greatly 
improve naturalness and musicality [9], suggesting a 
similar benefit for singing synthesis. 

Harmonic synthesis in SVS, particularly through 
structured multi-voice modeling such as SATB 
arrangement, remains underexplored, with most 
existing tools limited to monophonic outputs or 
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requiring labor-intensive manual layering. While choral 
synthesis has a long history in speech synthesis—
such as SATB voice modeling using rule-based 
systems [10]—modern SVS platforms are 
predominantly designed for monophonic vocal lines. 
Some efforts, such as Wu et al. [11], explore multi-
singer neural vocoders or layered synthesis to 
simulate choir effects, but these methods often require 
extensive training data and high computational cost. 
Current MIDI-to-singing workflows for choral singing 
typically involve manually rendering each voice 
(Soprano, Alto, Tenor, Bass) and combining them in 
post-processing, often without precise attention to 
harmonic interaction. 

Thus, integrating melodic accent modeling with 
harmonic blending in a MIDI-to-singing pipeline 
presents an opportunity to significantly enhance 
expressiveness. The proposed method in this study 
builds on previous SVS research by explicitly 
representing melodic accents as perceptual features 
and synthesizing individual SATB parts to simulate 
choral harmony. This dual emphasis aims to bridge the 
gap between mechanical MIDI reproduction and 
emotionally rich vocal performance. 

III. PROPOSED FRAMEWORK 

To enhance expressiveness in MIDI-to-singing 
synthesis, our proposed framework integrates melodic 
accent modeling with harmony-based vocal part 
generation. The system operates in two stages: (1) 
computing melodic accent intensity for each note 
through sequential MIDI analysis, and (2) generating 
harmonized two-part voices (high and low) using 
triadic chord structures. 

A. Melodic Accent Estimation and UST Flag 
Mapping 

In UTAU, UST (UTAU Sequence Text) files encode 
lyrics, pitch, and expressive parameters via flags. We 
propose an automated method to model melodic 
accents—perceptual note emphases—using pitch 
intervals, informed by music perception research [8].   
Let: 

 Pi be the pitch (MIDI note number) of note i. 

 Pi-1 be the pitch of the previous note 

 Δi =∣Pi− Pi-1∣be the pitch interval 

Melodic accent intensity is quantified via pitch 
interval analysis, grounded in perceptual studies [8]. 
For a note sequence {Pi }, the accent level Ai is 
classified as: 

 Low: (Ai=0): Δi < 3 semitones (subtle 
emphasis, e.g., stepwise motion) 

 Medium: (Ai=1):3 ≤ Δi ≤ 5 semitones (moderate 
emphasis, e.g., minor thirds) 

 High: (Ai=2): Δi > 5 semitones (strong 
emphasis, e.g., leaps) 

Where Δi =∣Pi− Pi-1∣This value is mapped to 

UTAU flags through a deterministic function f(Ai) in 
Table I. 

TABLE I.  MELODIC ACCENTS WITH FLAGS MAPPING 

Accent 

Level 

Δ (Pitch Interval) UTAU Flags | 

Low <3 semitones g+0, t0, Y0, H0, B0 

Medium 3–5 semitones g+5, t20, Y10, H10, 

B10 

High > 5 semitones g+10, t40, Y20, H20, 

B20 

Flags adjust: g (gender shift), t (breathiness), Y (vocal 

edge), H (high-frequency boost), and B (brightness), 

enabling automated, musically coherent accentuation 

from MIDI input. 

 

Fig. 1. Example of UST file editing showing melodic 
accent flag mappings added. 

Fig.1. is the example of UST file editing showing 
melodic accent flag mappings and added harmony 
track. The UST file is a plain-text format representing 
time-aligned note sequences and voice parameters. 
By editing pitch, timing, and UTAU flag values directly, 
we implement both melodic accent emphasis and two-
part harmony within the UTAU environment. 

B. Melody Harmonization with Triadic Chords 

Melody harmonization generates a lower voice to 
complement a melody, enhancing musical depth. Our 
framework produces two-part harmony (melody and 
lower voice) using triadic chords for UTAU synthesis. 

1) Harmonization Strategy 

The algorithm applies music-theoretic principles: 

a) Chord Selection: For each melody note, 
choose a diatonic triad (I, ii, iii, IV, V, vi, vii°) where the 
note is the root, third, or fifth, using a scoring function 
to prioritize tonal continuity based on the previous 
chord. 

b) Lower Voice: Choose a chord tone (third or 
fifth) 3–7 semitones below the melody, ensuring 
singability (within vocal range) and avoiding voice 
crossing. 

http://www.jmess.org/
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c) Progression Logic: Harmonize locally per note, 

enforcing functional progressions (e.g., I → IV → V → I). 

For example, in C major, a melody sequence [C4, E4, 
G4] is harmonized with triads [C: C-E-G, C: C-E-G, G: 
G-B-D], yielding lower voice notes [G3, C4, B3]. 

2) Integration with UTAU 

The melody and harmony are exported as separate UST 

tracks. Timbral contrast is achieved using distinct 

voicebanks or flags (e.g., g+20 for the lower voice). This 

rule-based method ensures automated, coherent two-part 

synthesis. The harmonization algorithm pseudocode is 

shown in Fig, 2. 

 

Fig. 2. The Algorithm of two-part Harmonization. 

IV. EXPERIMENTS AND EVALUATION 

To evaluate the effectiveness of our expressive 
MIDI-to-singing framework, we conducted a 
comparative listening test using synthesized singing 
samples generated under three conditions: (1) 
Baseline (B1): MIDI-to-UTAU synthesis without accent 
flags or harmonization, (2) Accent Only (B2): MIDI-to-
UTAU synthesis with accent-based flag mapping, and 
(3) Accent + Harmony: MIDI-to-UTAU synthesis with 
both accent-based flag mapping and two-part harmony 

A. Dataset and Setup 

We selected five well-known folk and classical 
melodies (e.g., “Scarborough Fair,” “Greensleeves,” 
“Ave Maria”) as the input MIDI data. Each MIDI file 
included a monophonic melody line with lyrics 
annotated. For harmony synthesis, we applied our 
triadic harmonization algorithm in the key of the 
original piece. 

 We used a standard Japanese VCV voicebank in 
UTAU for all experiments and applied identical 
rendering settings across conditions, aside from 
expressive flag differences. Synthesized audio was 
exported as WAV files for listening tests. 

B. Subjective Listening Test 

We recruited 15 participants with backgrounds in 
music or audio production. Each participant listened to 
a randomized set of 15 clips (5 songs × 3 versions) 
through studio headphones. They were asked to rate 
each clip on the following criteria using a 7-point Likert 
scale: (1) Naturalness (Does it sound like a human 
singer?), (2) Musicality (How expressive and musically 

convincing is the performance?), and (3) Emotional 
Impact (Does the performance convey feeling?). 

C. Results 

The listening test results demonstrated significant 
improvements across all evaluated metrics when 
melodic accent modeling and harmony generation 
were applied. As shown in Table II, the combined 
approach (Accent + Harmony) achieved the highest 
scores in naturalness (5.8), musicality (5.9), and 
emotional impact (5.6), outperforming both the 
baseline and accent-only conditions. The standard 
deviations and confidence intervals further confirmed 
the consistency of these preferences among 
participants. The listening test results (mean scores 
with standard deviations and 95% confidence 
intervals) are shown below: 

TABLE II.  SUBJECTIVE LISTENING TEST 

Method Naturalne

ss 

(SD, 95% 

CI) 

Musicality 

(SD, 95% 

CI) 

Emotional 

Impact 

(SD, 95% CI) 

Baseline 

(B1) 

3.2(0.8,[2

.9, 3.5]) 

3.0(0.7,[2.7,

3.3]) 

2.8 (0.9, [2.4, 

3.2]) 

Accent 

Only (B2) 

4.5(0.6,[4

.3, 4.7]) 

4.8(0.5,[4.6,

5.0]) 

4.4 (0.6, [4.2, 

4.6]) 

Accent + 

Harmony 

5.8(0.5,[5

.6, 6.0]) 

5.9(0.4,[5.7,

6.1]) 

5.6 (0.5, [5.4, 

5.8]) 

Statistical analysis using one-way ANOVA 
confirmed that differences in ratings between 
conditions were statistically significant and not due to 
chance (F(2, 126) = 45.3, p < 0.001), with a large 
effect size (η² = 0.42), meaning the type of synthesis 
had a strong impact on how participants rated the 
samples. Further analysis using Tukey’s HSD test 
showed that: The Accent + Harmony version was 
significantly better than the Baseline (p < 0.001), with a 
very large effect size (Cohen’s d = 1.8). It was also 
better than Accent Only (p < 0.01), with a large effect 
size (Cohen’s d = 0.9). This means that listeners 
clearly noticed and preferred the expressive features 
added through both accent mapping and harmony 
generation. In summary, adding melodic accents alone 
helped improve performance quality, but adding both 
accents and harmonies made the result sound 
significantly more natural, musical, and emotionally 
engaging. 

V. DISCUSSION 

The experimental findings confirm that the proposed 
rule-based framework effectively enhances MIDI-to-
singing synthesis by automating melodic accent 
mapping and two-part harmony generation. The pitch 
interval-based accent system introduces perceptual 
emphasis without complex modeling, while triadic 
harmonization adds musical depth, improving 
naturalness and emotional impact. This lightweight 
approach requires minimal computational resources, 
making it suitable for real-time music production on 
standard hardware. 
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One limitation is the reliance on static diatonic key 
frameworks, which may limit applicability to 
modulating, chromatic, or non-Western scales unless 
expanded via adaptive key inference or corpus-driven 
chord selection. Additionally, while UTAU offers 
extensive timbral control via flags, the exact effect can 
vary across voicebanks, making results somewhat 
voicebank-dependent. 
Future improvements could include: 

 Incorporating dynamic or phrasing control 
(e.g., crescendo, legato) alongside accents. 

 Extending harmonization to full SATB or more 
advanced AI-based harmonic modeling. 

 Integrating emotion classifiers or sentiment 
tags for automatic mood adaptation. 

VI. CONCLUSION 

This paper presents a rule-based MIDI-to-singing 
synthesis framework for UTAU, automating melodic 
accent modeling and two-part harmony generation. By 
mapping pitch intervals to UTAU flags and generating 
triadic harmonies, our method significantly improves 
naturalness, musicality, and emotional impact, as 
validated by listening tests. 

The framework’s lightweight design enables real-
time synthesis on resource-constrained systems, 
offering a practical alternative to neural-based SVS for 
music production and multimedia engineering. Future 
work will integrate neural prosody modeling for 
dynamic phrasing, adaptive key detection for complex 
melodies, and sentiment-driven synthesis for 
expressive app 
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