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Abstract— In this paper, development of 
convolutional neural network (CNN)-based deep 
learning model for prediction of Covid-19 infection 
is presented. The CNN-based deep learning 
technique was based on Covid-19 chest X-ray 
images dataset from the GitHub repository with 
712 images of those persons with Covid-19 and 
1583 images of those persons that are normal. 
The study utilized the chest X-ray image dataset to 
train, validate and test the model. The dataset 
images were first pre-processed to suit the 
application of deep learning techniques after 
which Google Colab Graphics processing unit 
(GPU) was used to train the COVID-19 model for 3 
hours and 70 epochs. The classification model 
results show a training loss values of 0.0565 with 
training accuracy values of 98.34%. Also, the 
training precision results is 0.9872, training recall 
values is 0.9891 while the validation loss value is 
0.0633. Furthermore, the results shows that the 
validation accuracy is 98.62%, the validation 
precision results is 0.9921 while the validation 
recall value is 0.9881. In addition, the test loss 
results is 0.0791, the test accuracy results is 
96.07% while the test precision values 0.9571, and 
the test recall values is 0.9842. Altogether, the 
COVID-19 classification mode accuracy was very 
high with a value above 98 %. This shows that the 
model can effectively predict COVID-19 infection 
by analyzing the chest X-ray images of people 
suspected to have such infection. 

Keywords— Deep Learning, COVID-19, chest X-
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1. INTRODUCTION

CORONAVIRUS disease denoted as COVID‐19 is a form 
infectious disease that is attributed to severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[1,2,3,4,5,6,7,8].  It spread rapidly across the globe to such 
an extent that the WHO (world health organisation) 
declared it a pandemic [9,10,11,12,13,14,15]. The popular 
symptoms of COVID-19 include fever, sore throat, 
respiratory disorder, fatigue, shortness of breath as well as 
muscular pains. [16,17,18,19,20,21,22,23] Available 
clinical reports show that early detection of the infection 
and isolation of infected persons are the most effective 
ways to stem the spread of the disease. Also, early detection 
will help to commences treatment to avoid complications of 
severe infection.  

Accordingly, in this paper, a convolutional neural network 
(CNN)-based deep learning model for prediction of 
COVID-19 infection is presented [24,25,26,27,28,29,30]. 
Although, there are some other ways of screening for 
COVID-19 infection, the approach presented in this paper 
is based on the use of the dataset of ChestX-ray images 
which is used to train the CNN-based deep learning model 
such that the model can be used to effectively predict from 
the frontal-view ChestX-ray images the likelihood of 
COVID-19 infection. The effectiveness of such technology 
lies on the careful pre-processing of the dataset ChestX-ray 
images, careful selection of appropriate architecture for the 
COVID-19 classification model and fine tuning of the 
various parameters and model hyper-parameters. 
Eventually, the prediction performance of the prediction 
model is characterized and presented in various useful 
comprehensive metrics. 
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