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Abstract—Pettis and Dunford’s integrals are the 
most important concepts concerning the modern 
theory of probabilities. We extend this to a 
statistical form. In this paper, we prove the 
countable additive of the statistical Pettis integral. 
For, this we need some properties of the 
unconditional statistical convergence of series in 
Banach spaces. We give an example where we 
show’ if a series is statistically unconditionally 
convergent then it is weakly absolutely 
statistically convergent. 
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I.  INTRODUCTION  

IT IS KNOWN THAT THE IDEA OF STATISTICAL 

CONVERGENCE WAS GIVEN BY ZIGMUND [12]. THE 

CONCEPT OF STATISTICAL CONVERGENCE WAS 

FORMALIZED BY STEINHAUS[11] AND FAST [6]. SOME 

YEARS LATER, THE CONCEPT WAS REINTRODUCED BY  

SCHOENBERG [9]. STATISTICAL CONVERGENCE HAS 

BECOME AN ACTIVE AREA OF RESEARCH IN RECENT YEARS. 
IN THIS PRESENTATION, WE FOLLOW CONCEPTS 

INTRODUCED BY FRIDY[8] ABOUT THE CONVERGENCE OF 

SEQUENCES AND THE CONCEPT OF  SCHOENBERG ABOUT 

INTEGRATION THE BASIC CONCEPT IS THE STATISTICALLY 

CAUCHY CONVERGENCE OF FRIDY[7].  

II. PRELIMINIARES 

 

Let be An a subset of an ordered natural set . It said 

to have a density (A) if 
| |

( ) lim n
n

A
A

n
   , where 

An = {k<n: kA} and with |A| denotes the cardinality of 
the set A. It is clear that the finite sets have the 

density zero and δ(A)= 1-δ(A) if A'=-A. If a property 

P(k)={k: kA}  holds for all kA with δ(A)=1, we say 
that property P  holds for almost all k that is a.a.k.  
The vectorial sequence x is statistically convergent to 
the vector(element) L  if for each ε >0  
 

 
1

lim |  : ||x || | 0n kk n L
n

    
 

or,  ||xk –L||<      a.a.k 

 
Definition 1. A series of elements 𝑥𝑘 ∈ X, k ∈ N of a 
Banach space X is said to be statistical convergent if 

the sequence of its partial sums 𝑆𝑛 = ∑ 𝑥𝑘
𝑛
𝑘=1 statistical 

convergent in the norm of the space x. 

 Definition 2 . The series ∑ 𝑥𝑘
∞
𝑘=1 ,  𝑥𝑘 ∈ X, k ∈ N  is 

absolutely statistically  convergent if    ∑ ‖𝑥𝑘‖𝐾 < ∞ 

kKN ,(K)= 1. 
Proposition1. If ∑ 𝑥𝑘

∞
𝑘=1  converges statistically 

absolutely then ∑ 𝑥𝑘
∞
𝑘=1   is statistical   convergent.  

Definition  3. A series ∑ 𝑥𝑘
∞
𝑘=1 of elements 𝑥𝑘 ∈ X, k ∈ 

N  of  a Banach space X is said to be statistical 
unconditionally convergent if is statistically convergent  
for every rearrangement of its terms, i.e. if the series 

∑ 𝑥𝑃(𝑛)𝐾 kKN ,(K)= 1   converges whenever P isa 

one-to-one mapping of N onto N.  
Theorem. For a series ∑ 𝑥𝑘

∞
𝑘=1  of elements 𝑥𝑘 ∈ X, k 

∈ N of a Banach space X the following conditions are 
equivalent: 
(a) the series converges statistically unconditionally 

(b) all series of the form 𝑥𝑛1
 + 𝑥𝑛2

+ 𝑥𝑛3
 +. . . where 

𝑛1<𝑛2<𝑛3< . . . statistical convergent,   
(c) for every bounded sequence (𝑎)𝑖 ,  (𝑎)𝑖 ∈ 𝑅  the 

series   ∑ 𝛼𝑘𝑥𝑘𝐾 statistical convergent to some 
element of X. 
Proposition 2.  
If  ∑ 𝑥𝑘

∞
𝑘=1  of elements 𝑥 𝑘 ∈ 𝑅 , 𝑘 ∈ 𝑁   is statistical  

unconditionally convergent if and only if  
is statistically absolutely convergent.  
Definition 4. 
A  sequence 𝑥𝑘 ∈ 𝑋 ,𝑛 ∈ 𝑁  statistically    weakly 
converges to 𝑥 ∈ 𝑋 if for every 𝑥∗ ∈ 𝑋∗ 

lim
𝐾

𝑥∗(𝑥𝑘) = 𝑥∗(𝑥) 

Definition 5 . 
A series∑ 𝑥𝑘

∞
𝑘=1 𝑥 𝑘 ∈ 𝑋 , 𝑘 ∈ 𝑁     statistical weakly  

convergent to a sum s ∈ X if for every 
 x* ∈ X* the limit 

lim𝐾 𝑥∗(∑ 𝑥𝑘𝐾 ) = lim𝐾 𝑥∗(∑ 𝑥𝑘) =𝐾 𝑥∗(𝑠) 
Theorem. (Orlicz, Pettis)[10] 
 Let ∑ 𝑥𝑘

∞
𝑘=1 𝑥 𝑘 ∈ 𝑋 , 𝑘 ∈ 𝑁 a series in a Banach space 

X.  
 If for each set 𝐴𝑁 there is 𝑥𝐴 ∈ 𝑋 such that for each 

𝑥∗ ∈ 𝑋∗ we have  ∑ 𝑥∗(𝑥𝑘𝑘∈𝐴 ) = 𝑥∗(𝑥𝐴) 

 then the series ∑ 𝑥𝑘
∞
𝑘=1  is unconditionally convergent. 

 
Definition 6 : 
A series ∑ 𝑥𝑘

∞
𝑘=1  is called statistical weakly absolutely 

convergent if    ∑ |𝑥∗(𝑥𝑘)| <∝𝐾  
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Proposition 3 . 
If  ∑ 𝑥𝑘

∞
𝑘=1  is statistically  unconditionally  convergent 

then is statistical  weakly absolutely convergent. 
 
 

Example. 

For 𝑘 ∈ 𝑁 denote by        

𝑒𝑘 = {
(0, … 0, 𝑘, 0 … )𝑘 𝑝𝑟𝑖𝑚𝑒

(0, … ,0,1,0,0 … )𝑜𝑡ℎ𝑒𝑟𝑠
 

𝑒𝑘   is  the element of 𝑐0 with 1 on the k-th position in the 

sequence. 

Since we have 

∑ 𝑒𝑘

𝑛

𝑘=1

= {
(1,2,3,1 … 𝑛, 0,0 … ), 𝑘 𝑝𝑟𝑖𝑚𝑒

(1,1,1 …  1 ,0,0 … ),                 𝑜𝑡ℎ𝑒𝑟𝑠
 

For ∈ 𝑁 , we can see immediately that the series ∑ 𝑒𝑘
∞
𝑘=1  

does not converge in 𝑐0(in the norm) 

and the serie  ∑ 𝑒𝑘𝐾  has the same nature. 

Assume that 𝑥∗ = 𝑐0
∗ = 𝑙1 ,  i.e. 𝑥∗ = (𝛼1, 𝛼2, … , 𝛼𝑘, … )  

,𝛼𝑘 ∈ 𝑅 ,𝑘 ∈ N  

st-∑ |𝛼𝑘|∞
𝑘=1 = ‖x∗‖c0

∗ < +∞ or ∑ |𝛼𝑘|𝐾 < +∞ . 

Then 𝑥∗(ek) = αk  for k not prime 

∑|𝑥∗(ek)|

𝐾

= ∑|𝛼𝑘|

𝐾

< +∞ 

i.e the series ∑ 𝑒𝑘
∞
𝑘=1   is stastically  weakly convergent . 

Since 𝑥∗(∑ 𝑒𝑘) = ∑ 𝛼𝑘𝐾𝐾   for 𝑘 ∈ 𝐾 we can see that this 

sequence  converges to ∑ 𝛼𝑘 = 𝑥∗(𝑦)𝐾  

, where y = (0,0,1,0 ,1,0,1,1 . . )  ,is a sequence  which does 

not belong to 𝑐0. This means that if the series∑ 𝑒𝑘
∞
𝑘=1   were 

statistically weakly convergent then its weak sum would be 

y but  𝑐0 contains  such element.  

 

Definition 7 .A weakly measurable 𝑓 ∶  𝑆 → 𝑋   with 
x*(f) Lebesgue integrable for every  

x* ∈  X* is  Statistical Pettis integrable if for every 
measurable E 𝑆  there is an element 𝑥𝐸  ∈  X that 
satisfies  

𝑥∗(𝑥𝐸) = ∫ 𝑥∗

𝐸

(𝑓) 

for every 𝑥∗𝜖 𝑋∗. 
 
Theorem .  
If  𝑓: 𝑆 → 𝑋  is st- Pettis integrable define for a 

measurable set 𝐸 𝑆 the function 

𝜗(𝐸) = 𝑃𝑠 − ∫ 𝑓 𝑑𝜇 ∈ 𝑋
𝐸

 (the indefinite  st-Pettis 

integral).  

The function 𝜗 is countably additive. 
Proof: 
Assume that𝐸𝑛 𝑆 ,  n∈ N are measurable sets,𝐸𝑛 ∩
𝐸𝑚 = ∅  , 𝑛 ≠ 𝑚. Then 

𝑥∗(𝜗(⋃ 𝐸𝑛)) = 𝑥∗( 𝑃𝑠

∞

𝑛=1

− ∫ 𝑓 𝑑𝜇 = 𝐵𝑠 − ∫ 𝑥∗

⋃ 𝐸𝑛
∞
𝑛=1⋃ 𝐸𝑛

∞
𝑛=1

(𝑓) 𝑑𝜇 

= ∑(𝐵𝑠 − ∫ 𝑥∗

𝐸𝑛

∞

𝑛=1

(𝑓) 𝑑𝜇 ) = ∑ 𝑥∗(𝜗(𝐸𝑛))

∞

𝑛=1

 

 
 

For every 𝑥∗ ∈  𝑋∗  .This means that    is weakly 
countably additive, i.e. the series of real numbers 
∑ 𝑥∗(𝜗(𝐸𝑛))∞

𝑛=1  is convergent for every 𝑥∗ ∈  𝑋∗ . 
Hence it is also unconditionally convergent  this 
means that it is also weakly subseries convergent. 
The Orlicz-Pettis theorem [10]  yields that the series 
∑ 𝜗(𝐸𝑛)∞

𝑛=1  is statistically unconditionally convergent 
and henceforth convergent in norm. 
 

While         ∑ 𝜗(𝐸𝑛) = 𝜗(⋃ 𝐸𝑛)∞
𝑛=1

∞
𝑛=1  

 
The theorem is proved. 
 

Theorem. Let 𝑓: 𝑆 → 𝑋  be statistical  measurable of 
the form  
 
𝑓 = 𝑔 + ∑ 𝑥𝑛𝐾 𝜒𝐸𝑛

   𝛿(𝐾) = 1      (1) 

where 𝑔: 𝑆 → 𝑋   is measurable and bounded, 𝐸𝑛  are 
pairwise disjoint measurable subsets of S, 𝑥𝑛 ∈ 𝑋, n ∈ 

N  and 𝐸𝑛, n∈ 𝑁 can be chosen such that the series  
∑ 𝑥𝑛𝜇(𝐸𝑛)∞

𝑛=1    statistical converges unconditionally in 
X, and in this case we have  

𝑃𝑠 − ∫ 𝑓 𝑑𝜇 = 𝑃𝑠 − ∫ 𝑔 𝑑𝜇 + ∑ 𝑥𝑛𝐾𝐸𝐸
 𝜇(𝐸 ∩ 𝐸𝑛)    (2) 

for every measurable 𝐸 𝑆  and 𝛿(𝐾) = 1 
Proof. Assume that f  is statistical Pettis integratin of 
the form (1) . Since g is statistical bounded we have 

𝑔 ∈ 𝐵𝑆𝑃𝑆  by roposition 3.9 [10] and therefore also 

ℎ = 𝑓 − 𝑔 = ∑ 𝑥𝑛𝜒𝐸𝑛

𝐾

∈ 𝑃𝑠 

  If  𝐸 𝑆 is measurable then, because the indefinite 
statistical Pettis integral is countably additive by 
Theorem 3.24 , [10], we have  
 

∫ ℎ 𝑑𝜇 = ∑ ∫ ℎ 𝑑𝜇 = ∑ 𝑥𝑛𝜇(𝐸 ∩ 𝐸𝑛)   , 𝛿(𝐾) = 1

𝐾𝐸∩𝐸𝑛𝐾𝐸

 

 
 

Taking any rearrangement of the series  ∑ 𝑥𝑛𝜒𝐸𝑛𝐾 ,, we 

obtain the same function h, i.e.  
 

ℎ = ∑ 𝑥𝑛𝜒𝐸𝑛

𝐾

= ∑ 𝑥𝜋(𝑛)𝜒𝐸(𝜋(𝑛))

∞

𝑘=1

 

for any one-to-one map 𝜋 𝑜𝑓 𝐾  onto N and of course  
 

∫ ℎ 𝑑𝜇 = ∑ ∫ ℎ 𝑑𝜇

𝐸∩𝐸𝑛

= ∑ 𝑥𝜋(𝑛)𝜇(𝐸 ∩ 𝐸𝑛)

∞

𝑘=1

∞

𝑛=1𝐸

∈ 𝑋 

 
 
Hence the series ∑ 𝑥𝑛𝜇(𝐸𝑛)∞

𝑛=1 is unconditionally 
convergent. 
To show the converse let us mention that the function 
𝑔: 𝑆 → 𝑋  being bounded (‖𝑔(𝑡)‖𝑋 ≤ 𝑀  for almost all 

𝑡 ∈ 𝑆) is statistical  Bochner integrable  and therefore 
𝑔 ∈ 𝑃𝑠 by Proposition 3. [10]  Now it suffices to show 
that  ℎ = ∑ 𝑥𝑛𝜒𝐸𝑛𝐾   , is statistical  Pettis integrable 
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provided the series ∑ 𝑥𝑛 𝜇(𝐸𝑛)∞
𝑛=1 is unconditionally 

convergent in X. 
Without loss of generality it can be assumed for 

simplicity that 𝜇(𝐸𝑛)> 0,𝑛 ∈ 𝑁 . Assume that 𝐸 𝑆  is 
measurable.  
Then the series  
 

∑ 𝑥𝑛 𝜇(𝐸 ∩ 𝐸𝑛) =

𝐾

∑ 𝑥𝑛 𝜇(𝐸 ∩ 𝐸𝑛)
𝜇(𝐸 ∩ 𝐸𝑛)

𝜇(𝐸𝑛)
𝐾

 

 

is unconditionally convergent in X because  
𝜇(𝐸∩𝐸𝑛)

𝜇(𝐸𝑛)
≤

1 ,for all 𝑛 ∈ 𝑁 (Theorem 3.21, [10] ). 
If  𝑥∗ ∈ 𝑋∗  then  ∑ 𝑥𝑛

∗ 𝜇(𝐸 ∩ 𝐸𝑛)𝐾   converges 
unconditionally in R and therefore by proposition 3.22 
[4]  we have 
 

∫ |𝑥∗(ℎ)|
𝐸

𝑑𝜇 = ∑ 𝑥𝑛
∗ 𝜇(𝐸 ∩ 𝐸𝑛)𝐾  =𝑥∗(∑ 𝑥𝑛 𝜇(𝐸 ∩ 𝐸𝑛)𝐾 ) 

 

And ℎ ∈ 𝑃𝑠.While 

𝑃𝑠 − ∫ ℎ 𝑑𝜇 =

𝐸

∑ 𝑥𝑛 𝜇(𝐸 ∩ 𝐸𝑛)

𝐾

 

 

This yields f = g + h ∈ Ps  and also the equality (2) 
 
Theorem 2.3.4.   Suppose that X does not contain 
subspaces  isomorphic to 𝐶0 and let     𝑓: 𝑆 → 𝑋  be  
Statistical Dunford integrable. If   f  is  statistical 
measurable, then f is Statistical Pettis integrable on S. 
 
Proof. Since f   is measurable, we have  the relation 
 

𝑓 = 𝑔 + ∑ 𝑥𝑛

𝐾

𝜒𝐸𝑛
   𝛿(𝐾) = 1 

where g : S→ 𝑋 X is measurable and bounded, 𝐸𝑛  are 
pairwise disjoint measurable subsets of S,  
𝑥𝑛 𝜖𝑋 , 𝑛 ∈ 𝑁. Since the interval S is compact, the 

function 𝑔: 𝑆 → 𝑋 is Bochner integrable and by 
Proposition 2.3.1, [10] also  Pettis integrable. The 

Statisical  Dunford integrability    ∑ 𝑥𝑛𝐾 𝜒𝐸𝑛
 

yields the Statistical Dunford  integrability ( Lebesgue 

integrability )  of  𝑥∗(∑ 𝑥𝑛𝐾 𝜒𝐸𝑛
)   for every             

x*  X* and we have also 𝑥∗(∑ 𝑥𝑛𝐾 𝜒𝐸𝑛
)=   

∑ 𝑥∗(𝑥𝑛𝐾 𝜒𝐸𝑛
)    because the sets En are pairwise 

disjoint.  
Therefore we have  

∑ 𝑥∗|𝑥𝑛𝜇(𝐸𝑛)|𝐾 < +∞ for every x*  X*. 

This implies that the series ∑ 𝑥𝑛𝐾 𝜇(𝐸𝑛)    statistical 
weakly absolutely converges . 
 
Since X does not contain subspaces isomorphic to 𝐶0, 
by the Bessaga-Pelczyriski Theorem B.22 ,[10] 

presented in Appendix B, the series ∑ 𝑥𝑛𝐾 𝜇(𝐸𝑛)   
converges unconditionally in X. Hence,∑ 𝑥𝑛𝐾 𝜒𝐸𝑛

 

 is Pettis integrable by Proposition 2.3.3 ,[10] and we 

have fP. 
Theorem .Suppose that X does not contain 

subspaces isomorphic  to 𝐶0 and let 𝑓: 𝑆 → 𝑋 

Statistical  Dunford integrable. If   𝐷𝑠 − ∫ 𝑓 𝑑𝜇 ∈ 𝑋
𝐸

   

for every interval J  S then f is  Statistical Pettis 
integrable on S.  
 
Proof. First of all we have the following statement 
If   𝐽𝑘 𝑆, 𝑘 ∈ 𝑁     is a sequence of non-overlapping 

intervals then 𝐷𝑠 − ∫ 𝑓 𝑑𝜇 ∈ 𝑋
𝐸

 

Indeed, we have 

𝐵𝑆 − ∫ 𝑥∗(𝑓)𝑑𝜇 = ∑(𝐵𝑆 − ∫ 𝑥∗

𝐽𝑘𝐾⋃ 𝐽𝑘

(𝑓)𝑑𝜇)

= ∑ |𝑥∗(𝐷𝑠 − ∫ 𝑓 𝑑𝜇)

𝐽𝑘

|

𝐾

< +∞ 

 

for every x*  X*. Hence the series  ∑ 𝐷𝑠 − ∫ 𝑓 𝑑𝜇
𝐽𝑘

𝐾     

statistical weakly abso lutely converges. 
 

Since X does not contain subspaces isomorphic to 𝐶0 
the Bessaga-Pelczyriski Theorem , [10]  implies  

that the series   ∑ 𝐷𝑠 − ∫ 𝑓 𝑑𝜇
𝐽𝑘

𝐾    statisticaly  

unconditionally converges to a certain element 
𝑥∪𝐽𝑘

∈ 𝑋 

and 𝐷𝑠 − ∫ 𝑓𝑑𝜇 = 𝑥∪𝐽𝑘
∈ 𝑋

∪𝐽𝑘
   , By Theorem 

(1.11),[10] every open set in R",  𝑚 ≥ 1        can be 
written as a countable union of non-overlapping 
(closed) intervals an therefore by the statement above 

we obtain that𝐷𝑠 − ∫ 𝑓𝑑𝜇  ∈ 𝑋
𝐺

      for every open set 

G  S. If  F S is closed then S \ F is open (in S) and 
 

𝐷𝑠 − ∫ 𝑓 𝑑𝜇 = (𝐷𝑠 − ∫ 𝑓𝑑𝜇) − (𝐷𝑠 − ∫ 𝑓 𝑑𝜇 ) ∈ 𝑋

S \ F𝑆𝐹

 

 
 
 
Note that if 𝑍 𝑆   is such that𝜇(𝑍) = 0   then 𝐷𝑠 −

∫ 𝑓 𝑑𝜇 = 0 ∈ 𝑋
𝑍

   .  Let now 𝐸 𝑆   be an arbitrary 

measurable set. Then by Theorem (3.28) ,[10] we 

have E = H UZ  where (Z) = 0 and H is of type  𝐹𝜎 i.e 

where  𝐻 = ⋃ 𝐻𝑘𝑘   , k  N are closed.  
Define  𝐿𝑛 = ⋃ 𝐻𝑘

𝑛
𝑘=1  .The sets  𝐻𝑘 𝑆  ,k ∈ 𝑁   are 

closed and 𝐿𝑛𝐿𝑛+1, 𝑛 ∈ 𝑁   .Set 𝐿0 = ∅, 

𝐾𝑛 = 𝐿𝑛𝐿𝑛+1 , 𝑛 ∈ 𝑁 .Then 𝐾𝑛 ∩ 𝐾𝑙 = ∅  per 𝑛 ≠ 𝑙  and 
𝐻 = ⋃ 𝐾𝑛

∞
𝑛=1 . 

Note  that 
 

𝐷𝑠 − ∫ 𝑓 𝑑𝜇 = 𝐷𝑠 − ∫ 𝑓 𝑑𝜇

𝐿𝑛𝐿𝑛+1𝑘𝑛

= (𝐷𝑠 − ∫ 𝑓 𝑑𝜇 ) − (𝐷𝑠 − ∫ 𝑓 𝑑𝜇

𝐿𝑛+1𝐿𝑛

)

∈ 𝑋 

 

Further 
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∫ 𝑥∗(𝑓 )𝑑𝜇 = ∫ 𝑥∗(𝑓 ) 𝑑𝜇

⋃ 𝑘𝑛𝐻

= ∑ ∫ 𝑥∗(𝑓 )𝑑𝜇

𝑘𝑛𝑛

= ∑ 𝑥∗ (𝐷𝑠 − ∫ 𝑓 𝑑𝜇

𝑘𝑛

) 𝑑𝜇

𝑛

 

And 
 

∑ |𝑥∗ (𝐷𝑠 − ∫ 𝑓 𝑑𝜇

𝑘𝑛

) 𝑑𝜇|

𝑛

= ∑ |𝐵𝑠 − ∫ 𝑥∗(𝑓)𝑑𝜇

𝑘𝑛

|

𝑛

≤ 

∑ 𝐵𝑠 − ∫ |𝑥∗(𝑓)|
𝑘𝑛

𝑛 𝑑𝜇 = ∫ |𝑥∗(𝑓)| 𝑑𝜇
⋃ 𝐾𝑛

 

=∫ |𝑥∗(𝑓)𝑑𝜇|
𝐻

< +∞ 

 

for every x*  X*. 
Similarly as above the Bessaga-Pelczynski Theorem 

B.22 , [10] implies that the series 𝐷𝑠 − (∫ 𝑓 𝑑𝜇)
𝑘𝑛

    

statistical uncondtionally converges to a certain 
element 𝑥𝐻 ∈ 𝑋 and  
 

𝐷𝑠 − (∫ 𝑓 𝑑𝜇) =

𝐻

𝑥𝐻 ∈ 𝑋 

Hense 

E H Z
Ds fd Ds fd Ds fd X         
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