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 Abstract— In this paper, the development of 
fussy logic-based approach for fault current 
diagnosis and classification in power lines is 
presented. The essence of the study is to use 
some sets of input data collected over time from 
the case study power line to design a fussy logic 
that can detect when fault current fault has 
occurred and also determine the type of fault 
current that has occurred. The data used are 
obtained from the Transmission Company of 
Nigeria (TCN), Eket transmission station, Akwa 
Ibom State. Particularly, the absolute values of the 
three phase currents for each fault condition are 
used to calculate the values of the inputs 
variables to the fussy logic-based fault current 
diagnosis and classification system. The system 
is modeled in Mathlab software for a radial power 
network. The simulation was carried for line-A to 
ground (a-g), line-B to ground (b-g), line-C to 
ground (c-g), lines-AB to ground (a-b-g), lines-BC 
to ground (b-c-g), lines-CA to ground (c-a-g). 
Lines-AB (a-b), lines-BA (b-c), lines-CA (c-a), and 
lines ABC. The fussy logic-based fault diagnostic 
system was able to simulate and identify the ten 
types of power line faults. The results from the 
automated fussy logic-based mechanism were 
validated by the manually computed values for the 
fault current detection and classification. The 
results obtained using the automated fussy logic-
based mechanism matched exactly with those 
obtained when the manual approach was used. In 
all, the fussy mechanism can effectively be used 
to detect and classify fault current that do occur in 
power lines. 

Keywords— Fault Location, Circuit Breakers, 
Power System Networks, Fuzzy Logic, Relays 

1. Introduction 

Generally, in large power system networks, large 
amount of data is usually collected from the 
transmission lines so as to implement power system 
control [1,2,3,4,5]. Among other things, power system 
control is essential for protection of the whole system 
and this requires real-time and accurate detection and 

classification of fault on the transmission lines 
[6,7,8,9,10]. Requisite mathematics models and 
attendant computer programs and process are usually 
put in place to enable the power system operators to 
detect and classify the faults and also to speed up the 
location and isolation of fault sections in the 
transmission system when fault occurs. The common 
procedure used for the fault diagnosis is usually 
based on a preset threshold for the fault current and 
voltages [11,12,13]. This is because faults on 
transmission line give rise to transient DC offset as 
well as high-frequency transient components which 
can be extracted from the fault current and voltage 
signals [14,15,16]. In any case, it is difficult to set a 
general threshold value since the fault current and 
voltage signal vary with different fault type, fault size 
and fault location, among other factors [17,18,19,20].  

Furthermore, when fault occurs on a given phase 
of a three phase transmission line, due to the coupling 
effect, the faulted phase will also affect the other 
phases [21,22,23]. In all, it requires an intelligent 
approach which can use the available information on 
the fault current and voltages to effectively detect and 
classify the fault. In this paper, a fussy logic approach 
for fault current diagnosis and classification in power 
lines. In the fussy logic-based approach, different 
levels of fault currents and different fault conditions on 
the power lines are classified into various degrees of 
membership functions which are then used to detect 
and classify the fault for further effective fault location 
procedure. Sample transmission networks are 
modeled and used a case study to demonstrate the 
applicability of the ideas presented in this paper. 

2.0 Methodology 

2.1 Fuzzy Logic Algorithm (FLA) for Fault 
Current Diagnosis 

In this work, fuzzy controller architecture is 
developed as shown in Figure 1. The fuzzy controller 
is made up of three basic elements: Fuzzification, 
fuzzy inference and defuzzification. In Figure 1, the 
input quantity is represented by X, and it represents 
the three phase current magnitude and zero sequence 
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