
Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 6, June - 2022

www.jmess.org

JMESSP13420855 4498

Learning Ontology from Relational Database
(Symmetry and Transitive Characteristics)

Paramita Mayadewi
1

Institut Teknologi Bandung, School of Electrical
Engineering and Informatics

Telkom University
Bandung, Indonesia

paramita@telkomuniversity.ac.id

Benhard Sitohang
2

Institut Teknologi Bandung, School of Electrical
Engineering and Informatics

Bandung, Indonesia
benhard@stei.itb.ac.id

Fazat N. Azizah

3

Institut Teknologi Bandung, School of Electrical Engineering and Informatics
Bandung, Indonesia

fazat@informatika.org

Abstract—In ontology learning, relational
databases can be used as a source of knowledge.
The are several approaches to building ontologies
from relational databases. Most of them use
schema analysis to transform database
components into ontology components. Few of
the existing approaches deal with symmetric and
transitive relationships in databases. This paper
proposes an approach using primary and foreign
key patterns to identify symmetric and transitive
relationships. This work aims to infer the facts
stated in the knowledge base and enrich the
ontology generated. Tests were carried out using
the Pellet reasoner on the Protégé application and
showed significant results.

Keywords—symmetric; transitive; primary key;
foreign key; ontology; relational databases

I. INTRODUCTION

Ontology is a conceptualization tool at the semantic
and knowledge level, providing explicit descriptions
and methods for information and knowledge [1].
Ontology development is an engineering activity, and
there are two main approaches to building, namely
building from scratch (manually) or using an ontology
learning approach. The term ontology learning
describes an approach to finding ontological
knowledge automatically or semi-automatically from
various sources [2]. [3] distinguishes different ontology
learning approaches based on resource types as
follows: ontology learning from unstructured data (web
pages), ontology learning from semi-structured data
(XML document) and ontology learning from structured
data (databases). There are many ways to represent
an ontology. Web Ontology Language (OWL) is one of
the most widely used languages for representing
ontologies. OWL is an ontology language for the
semantic web with formally defined meanings. OWL
provides class, property, individual, and data values
and is stored as a semantic web document [4].

Regardless of how ontologies are represented,
learning ontologies from relational databases is not a
new research problem. Several approaches and tools

have been developed to build ontologies of relational
databases [5][6][7][8][9][10][11][12][13][14][15]. There
are three main techniques used: (1) reverse
engineering, converting the relational model to a
conceptual model (which is considered to be
semantically richer than the relational model) or
retrieving information lost during the transformation of
the conceptual model to the relational model; (2)
schema mapping, converting relational components
into ontology components, through the use of
transformation rules and (3) data mining to analyze
stored data to enrich the ontology.

However, not many studies discuss the
identification of symmetric and transitive relationships.
Identifying symmetric and transitive relationships can
help infer the facts to be stated in the knowledge base
and enrich the resulting ontology. The approach taken
by [15][16][17] establishes rules for identifying
symmetric and transitive relationships. The rules for
symmetric relationships are defined in a unary
relationship table where the foreign key refers to a
primary key in the same table. Transitive rules are
applied to unary relationships with the On Delete
Cascade constraint. This constraint describes the
whole and part relationship, where the part cannot
exist without the whole (i.e. if the parent data is
deleted, all child data that refers to it will also be
deleted) [18][19]. Based on this, foreign keys are
mapped into transitive relationships.

Not all database designs apply On Delete Cascade
constraints on unary relationships, so it will be hard to
identify symmetric and transitive relationships if only
based on the presence or absence of On Delete
Cascade constraints on unary relationships. This
paper proposes an approach to identifying symmetric
and transitive relationships based on the patterns
formed between primary and foreign keys.

The remainder of this paper is organized as follows.
Section 2 discusses the proposed approach as well as
a brief explanation of the symmetry and transitive
relationships. We describe the experiments carried out
and the evaluation of the proposed approach in section

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 6, June - 2022

www.jmess.org

JMESSP13420855 4499

3, followed by a discussion of our work. The final
section includes concluding comments and some
topics for further work.

II. PROPOSED APPROACH

Symmetric and transitive relationships cannot be
described explicitly in a relational database, whereas
OWL allows the meaning of properties to be enriched
by using characteristic properties. Symmetric and
transitive relationships in relational databases will be
translated into the object properties characteristics in
OWL. Some characteristics are functional, inverse
functional, transitive, symmetric and others [20]. In
order to understand the symmetric and transitive
relationship, we start with the following definition.
[21][22].

 Definition 1: A relation R on a set A is symmetric if

every aRb then bRa, that is, if every (a,b) ∈ R then (b,
a) ∈ R. Thus, R is not symmetric if there is a, b ∈ A
such that (a, b) ∈ R but (b, a) ∉ R.

Symmetric is the opposite of itself. If a property P is
symmetric, and the property relates individual a to
individual b, then individual b is also related to
individual a via property P. The hasSibling or
hasSpouse property is an example of a symmetric
property. If Hansel has a spouse Ailee, then Ailee has
a spouse Hansel.

Hansel

Ailee

hasSpouse

hasSpouse

Fig 1. Example of Symmetric Property : hasSpouse

 Definition 2: A relation R on a set A is transitive if
every aRb and bRc then aRc, that is, if every (a, b), (b,

c) ∈ R then (a, c) ∈ R. Thus, R is not transitive if there
is a, b, c ∈ R such that (a, b), (b, c) ∈ R but (a, c) ∉ R.

Suppose property P is transitive, and P relates
individual a to individual b and individual b to individual
c. In that case, it is concluded that individual a is
related to individual c through property P. For example,
a transitive relationship has an ancestor. Individual
Diana has Freya ancestors, and Freya has Havana
ancestors, so it can be concluded that Diana has
Havana ancestors.

Diana
Freya

Havana

hasAncestor hasAncestor

hasAncestor

Fig 2. Example of Transitive Property : hasAncestor

As previously explained, we limit our approach to
tables which are unary relations. A unary relationship,
also called recursively, is a relationship in which there
is a relationship between occurrences and the same
entity set. In this relationship, the primary and foreign
keys are the same but they represent two entities with
different roles. Here’s the definition.

Definition 3: Given a relaton schema R, where r is
an instance of the relation. The primay keys pk in R
(i.e. pk = pkey(R)) and fk are foreign keys in R that

refer to pk (i.e. fk ∈ fkey(R) and refpk(fk) = pk).

 The problem is that there are many possible
relational database designs exist where the
relationships between tables can be symmetric,
transitive or both. The relationship between tables that
reflect the symmetric and transitive relationships can
be seen based on characteristics of the primary and
foreign key relationships. In this paper, we limit the
identification of symmetric and transitive relationships
to unary relationships. The following is an example of
an illustration of symmetric and transitive relationship
data that may be contained in a unary relationship.

1. Person{id (PK), name, spouse (FK reference
Person(id))}

Id Name Spouse

10 Ali 30

20 Ayten 50

30 Ayse 10

40 Bedriye

50 Ismail 20

60 Mediha

 The primary and foreign key relationship
characteristics form a symmetric pattern in the
Person table. For example, Spouse(Ali, Ayse)
Spouse(Ayse, Ali)

2. Employee{id (PK), name, manager_id (FK
reference Employee(id))}

Id Name Manager_id

100 Steven

101 Neena 100

102 Lex 100

103 Alexander 102

104 Bruce 103

 : : :

114 Den 100

115 Alexander 114

116 Shelli 114

 The Employee table has a transitive pattern. Lex is
Alexander’s manager, and Alexander is Bruce’s
manager, so indirectly, Lex is Bruce’s manager or

Bruce’s superior. Manager(Lex, Alexander) ∧
Manager(Alexander, Bruce) Manager (Lex,
Bruce).

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 6, June - 2022

www.jmess.org

JMESSP13420855 4500

Our approach identifies symmetric/transitive
relationships based on the pattern formed between the
primary and foreign keys. After the pattern is detected,
data analysis is carried out to determine the
characteristics of the pattern formed, whether it is a
symmetric or transitive relationship. The proposed
identification method considers the number of data
instances that support the findings and only processes
those that pass a certain threshold. Here is the
algorithm.

Input: Query result (pk & fk)

Output: Transitive/Symmetric Characteristic

Check_Transitive()

 num = len(list)

 for rec in list

 b=0

 while (b < num)

 if (fk[rec]=pk[b]) and (pk[rec] <>

 fk[b])

 add to list fk and pk

 b=b+1

 jum=0

 for k in list

 jum=jum+1

 if (jum = num)

 return “Transitive”

check_Symmetry()

 num=len(list)

 for c in list

 b=0

 while (b<num) and ((pk[c],fk[c]) <>

 (fk[b], pk[b]))

 b=b+1

 if ((pk[c], fk[c]) = (fk[b], pk[b])

 add to list fk and pk

 else

 add to list2 fk and pk

 if list2 null

 return “Symmetry”

III. EXPERIMENTS AND EVALUATION

Symmetric and transitive relationships in relational
databases are translated into Object Properties
characteristics in OWL. The resulting OWL document
from the proposed algorithm was tested in the free,
open-source ontology editor, Protégé. We use the
Pellet reasoner to check the inference correctness of
the resulting ontology. Figure 3 shows the symmetric
relationship inference results and the corresponding
code using the Manchester OWL syntax from the
symmetric relationship example shown in section 2.

ObjectProperty: hasSpouse

 Characteristic: Symmetric

 Domain: employee

 Range: employee

Fig 3. Example of Symmetric Property Results

Figure 4 shows transitive relationships inference
results and the coresponding code using the
Manchester OWL syntax from the example of the
transitive relationship shown in section 2. The results
of the inference show the indirect manager of an
employee. For example, employee104 has
employee103 as a direct manager. While
employee103 has an employee102 as direct
managers and employee102 has an employee100 as
direct manager. The inference results for
employee104 indicate that employee102 and
employee100 are indirect managers od employee104.
The same applies to employee115. The inference
results show that the indirect manager of
employee115 is employee100, and the direct
manager is employee114.

ObjectProperty: hasemployeesemployees

 Characteristic: Transitive

 Domain: employees

 Range: employees
Fig 4. Example of Transitive Property Results

IV. DISCUSSION

Relational schemas can capture some cardinality
constraints on relationships between entities by
defining constraints on foreign keys. However,
relational schemas do not have the expressive power
to define relationships with logical characteristics such
as symmetric and transitive. We have proposed an
approach to identify symmetric and transitive
relationships in unary relationship tables by finding the
characteristic pattern between primary and foreign
keys. Although the characteristic pattern of symmetry
and transitive relationships can be distinguished, some
relationships may not have the same characteristics,
although these relationships are expressed in a unary
relationships. Example: Employees(IdEmp, NmEmp,
MgrId), where IdEmp is the primary key, and MgrId is a

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 6, June - 2022

www.jmess.org

JMESSP13420855 4501

foreign key to the Employee table itself, which doubles
as Id Manager. The Employees table does not have a
symmetric relationship because if Alister is Chris’s
manager, it is impossible for the same Chris to be
Alister’s manager. Depending on domain semantics, a
transitive relationship may or may not be a transitive
relationship. If an employee’s manager means another
employee higher up in the organization, the manager
is a transitive relationship. However, it is not a
transitive relationship if it means only the direct
supervisor.

The example clearly shows that it is inherently
difficult to identify the relationship’s logical
characteristics in a relational schema without using
domain knowledge. While our proposed approach can
assist in identifying symmetric and transitive
relationships in the unary relationships table, expert
assistance in the knowledge domain can assist in
establishing the actual semantics implied in these
relationships.

V. CONCLUSION
Relational databases do not have explicit support

for symmetric and transitive support. Database
designers depend on data modelling patterns to be
able to identify them. Meanwhile, ontology languages
(e.g. OWL) provide grammar to explain symmetric and
transitive relationships. Based on this, we investigated
the research conducted to identify such relationships
in relational databases.

We have proposed a way to identify symmetric and
transitive relationships in unary relationships and
transform them into Object Property components in
OWL. The results of the transformation evaluation
carried out using the Pellet reasoner show the
expected conclusions from the symmetric and
transitive relationship.

The main aim of this work is to study the OWL from
relational databases to extract richer semantics. In
future work, the tables in the database will be further
analyzed to extract new relationships or concepts that
may be implicit in the relational database.

REFERENCES

[1] Y. Luo and C. Yu, “Development method of domain
ontology based on reverse engineering,” 2007
IEEE Int. Conf. Serv. Oper. Logist. Informatics,
SOLI, 2007.

[2] R. (eds. . Staab, S.; Studer, Handbooks on
Ontologies. 2007.

[3] A. Maedche and S. Staab, “Ontology Learning for
the Semantic Web,” IEEE Intell. Syst., vol. 16, no.
2, pp. 72–79, 2001.

[4] W3C, “OWL 2 Web Ontology Language : Structural
Specification and Functional-Style Syntax (Second
Edition),” 2012. [Online]. Available:
https://www.w3.org/TR/owl2-syntax/.

[5] M. Li and X. Y. Du, “Learning Ontology From
Relational Database,” Proceeding Fourth Int. Conf.
Mach. Learn. Cybern., no. August, pp. 18–21,
2005.

[6] R. Ghawi and N. Cullot, “Database-to-Ontology
Mapping Generation for Semantic Interoperability,”
VDBL’07 Conf. VLDB Endow. ACM, no.
September 2007, pp. 1--8, 2007.

[7] J. Sequeda, “Translating SQL Application to the
Semantic Web,” in In S.S. Bhowmick, J. Küng, and
R. Wagner (Eds.) DEXA, 2008, vol. 5181, no. May,
pp. 450 – 464.

[8] Saeed M. Sedighi, “A novel method for improving
the efficiency of automatic construction of ontology
from a relational database,” Int. J. Phys. Sci., vol.
7, no. 13, pp. 2085–2092, 2012.

[9] J. F. Sequeda, S. H. Tirmizi, O. Corcho, and D. P.
Miranker, Survey of directly mapping SQL
databases to the Semantic Web, vol. 26, no. 4.
2011.

[10] N. Gherabi, K. Addakiri, and M. Bahaj, “Mapping
relational database into OWL Structure with data
semantic preservation,” Int. J. Comput. Sci. Inf.
Secur., vol. 10, no. 1, pp. 42–47, 2012.

[11] I. Astrova, “Reverse engineering of relational
databases to ontologies,” Proceeding 1st Eur.
Semant. Web Symp. Grete, Greece, pp. 327–
341, 2004.

[12] N. Cullot, R. Ghawi, and K. Yétongnon,
“DB2OWL: A tool for automatic database-to-
ontology mapping,” SEBD 2007 - Proc. 15th Ital.
Symp. Adv. Database Syst., pp. 491–494, 2007.

[13] Z. Lei and L. Jing, “Automatic Generation of
Ontology Based on Database,” J. Comput. Inf.
Syst., no. April 2011, 2011.

[14] L. Yiqing, L. Lu, and L. Chen, “Automatic
Learning Ontology from Relational Schema,”
IEEE Symp. Robot. Appl., pp. 592–595, 2012.

[15] I. Astrova, N. Korda, and A. Kalja, “Rule-Based
Transformation of SQL Relational Databases to
OWL Ontologies,” 2nd Int. Conf. Metadata
Semant. Res., pp. 415–424, 2007.

[16] M. A. G. Hazber, R. Li, X. Gu, and G. Xu,
“Integration mapping rules: Transforming
relational database to semantic web ontology,”
Appl. Math. Inf. Sci., vol. 10, no. 3, pp. 881–901,
2016.

[17] B. Ben Mahria, I. Chaker, and A. Zahi, “A novel
approach for learning ontology from relational
database: from the construction to the
evaluation,” J. Big Data, vol. 8, no. 1, 2021.

[18] A. K. Silberschatz, F. Henry, and S. Sudarshan,
Database System Concepts, no. c. McGraw-Hill,
2006.

[19] Ramez Elmasri and S. Navathe, Fundamentals of

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 6, June - 2022

www.jmess.org

JMESSP13420855 4502

Database Systems. Addison Wesley, 2011.

[20] U. Prot et al., “A Practical Guide To Building
OWL Ontologies Using Protege,” Matrix, no.
April, pp. 0–107, 2011.

[21] S. Lipschutz and M. Lipson, Schaum’s outline of
theory and problems of discrete mathematics.
1976.

[22] Rozen, “Discrete Mathematics and its
Applications - Rosen - 0-07-288008-2.pdf.” .

http://www.jmess.org/

