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Abstract—The growth of information technology 

increases the amount of data generated. Most of 

the resulting data can be represented as a 

network or graph. Graph analysis is needed to 

extract the information contained in the data. 

Triangle counting is one of the fundamental and 

important metrics in complex networks analysis. 

Due to the resulting graphs being very large and 

diverse behaviors, counting the number of 

triangles in a graph is a challenge. There are many 

methods or algorithms to count the number of 

triangles in a graph. 

Most real networks are sparse, and some of 

them are very sparse. Previous research mentions 

that two basic triangle counting algorithms, node 

iterator and edge iterator work well for this type of 

graph. We evaluated several known exact triangle 

counting algorithms and used very large sparse 

graph datasets. Furthermore, we found that node 

iterator performs the best performance. Although 

generally, node iterator has worse complexity 

than other algorithms, it provides good 

performance for data that have a small maximum 

degree. Then we optimize the node iterator 

algorithm by deleting the nodes with d(v) < 2 

before counting the triangles. This optimization 

gives significant speedup for the node iterator 

algorithm. 
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I.  INTRODUCTION 

Graphs and networks are a ubiquitous model 
representation of real-life problems to extract 
information inherent in today's data. For example, we 
can represent how Facebook works by imagining the 

connection and interaction between friends. Then we 
can find out what communities are on Facebook, who 
are influencers, who are spreading news, and so on. 

A triangle in an undirected graph is a set of three 
vertices that connect each other. Finding, counting, 
and listing triangles in a graph becomes an interesting 
and important problem. These are because many of 
the fundamental and important metrics to extract 
information from complex networks used the triangle 
concept, such as measuring transitivity [1] and 
clustering coefficient [2]. Triangles concept has also 
been used in several real-world applications, such as 
spam filtering [3] and community detection [4] . 

Triangle counting problems have been discussed 
for years with various approaches [5]–[10]. And the 
comprehensive reviews have been presented well in 
previous research [11]–[13].  

Schank [11], [14]  evaluates triangles exact 
counting and listing algorithm with various degree 
distribution. He found that the forward algorithm gives 
the best performance. Latapy [12]   evaluated existing 
algorithms and proposed a new algorithm concerning 
space needs.  

Hasan [13] divides three approaches of triangles 
counting algorithms in random access data: exact 
triangle counting, approximate triangle counting, and 
distributed and parallel triangle counting. The last 
approach should also be combined with exact and 
approximate triangle counting approaches. Although 
approximation approaches are much faster than exact 
approaches, exact approaches provide an actual 
number of triangles.  

Real-life networks tend to be very large, sparse, 
and skewed. The size of graphs is very large and 
increasing rapidly. Graph today has million even billion 
nodes and increases every day. On the other hand, 
counting triangles in a large graph is computationally 
expensive. So finding an efficient algorithm is an 
important issue. 

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 8 Issue 1, January - 2022 

www.jmess.org 

JMESSP13420821 4214 

We focused on graphs that are very sparse, such 
as road networks, protein networks, and some of the 
social networks. The very sparse networks are the 
networks that have a small maximum degree, small 
average degree, and low standard deviation. In other 
words, the nodes of the graph have degrees that do 
not differ much from the average of degrees. 

We have two contributions to this paper: 

i. an experimental evaluation of some existing 
exact triangle counting algorithms for very 
sparse networks, 

ii. the optimization of triangle counting for very 
sparse networks by deleting nodes that have 
d(v) < 2. 

We expect that certain algorithms will be efficient 
for some datasets but not for others. Graph size, 
degree, and other graph properties distribution will be 
related to the performances of the algorithms. And 
deleting nodes with d(v)<2 of very sparse networks will 
significantly reduce the running time of algorithms. We 
evaluated several known algorithms using various 
sizes and sparsity of graph datasets. 

II. EXACT TRIANGLE COUNTING ALGORITHMS 

Consider an undirected, unweighted, and simple 
graph G = (V,E) with n = |V| vertices or nodes and m = 
|E| edges. The degrees of node v denote as d(v) and 
the maximal degree of graph G as dmax(G). The 
neighborhood of node v is denoted by N(v). 

A triangle of graph G is a set of three vertices {u, v, 
w} that contain edges = {(u,v), (v,w), (w,u)}. The 
number triangle of node v denoted as T(v), and the 
total triangle of graph G denote as T(G). 

The earliest triangle counting algorithm is based on 
matrix multiplication of adjacency matrix. Consider 
graph G is an undirected graph, and A[G] is the 
adjacency matrix of graph G. Then the total number 

triangle in graph G, T(G) =
1

6
Tr(A3), where Tr is the 

sum along diagonals of the matrix. The complexity of 
this algorithm is O(n3). This algorithm also can be 
implemented with fast matrix multiplication with 

running time O(nγ) , with γ = 2,373 , γ is fast matrix 
multiplication exponent[15] 

There are various algorithms for exact triangles 
counting. Most of them rely on matrix multiplication, 
node counting, or edge counting. We selected several 
known algorithms to be evaluated, two basic 
algorithms (node iterator and edge iterator) and three 
great modified algorithms (AYZ, node iterator core, 
and forward). 

A. Node Iterator 

Node iterator examines each node that has pair of 
neighbors connected and counts it. The algorithm 

iterates all nodes of graph G, say v. For (u, w) ∈ adj 
(v), if there is an edge that exists between u and w, {u, 
v, w} forms a triangle, and otherwise not. The total 
number of triangles in graph G is the sum of all node's 

triangles divided by 3. Each triangle will be counted 
three times, so the division is needed [13]. To avoid 
double-counting, we can add boundary v<u<w. The 

running time of this algorithm is O(ndmax
2 ). 

B. Edge Iterator 

Edge iterator iterates over each edge to examine if 
the edge contains a triangle. An edge e = (u, v) will 
form a triangle {u, v, w} if u and w have a common 
neighbor w. Therefore we can count the number 
triangle of edge e = (u, v) by counting the intersections 
between the neighbors of u and v. The total number 
triangle of graph G is a cumulative sum of triangles 
containing each edge divided three. As node iterator, 
to avoid double-counting, we can add boundary v<u< 

w. The running time of this algorithm is O(m. dmax) [13]. 

C. AYZ-Counting 

Alon, Yuster, and Zwick [7],  called AYZ, have 
proposed a triangle counting algorithm which is 

O(m2γ/γ+1)running time. AYZ algorithm divides nodes 
become two categories, 'low degree' and 'high degree'. 

It defines threshold ∂ =
γ−1

γ+1
, γ = 2,373where γ is fast 

matrix multiplication exponent[15]. Low degree nodes 

are nodes that have degrees less than ∂ , and 
otherwise, are high degree nodes. The number triangle 
of low degree nodes counted using node iterator 
algorithms and (fast) matrix multiplication used to 
count triangle of high degree nodes. 

D. Node Iterator Core 

Node iterator core is the modification of the node 
iterator algorithm that uses the core concept. This 
algorithm takes a node with a currently minimal degree 
and counts its triangles using the node iterator 
algorithm, then removes the node from graph G [11], 

[14]. Count and remove all nodes v with(v) ≤ √m. The 
sum triangles of removing nodes and remaining graph 

are the total number triangles of graph G. The k-core 
of graph G is the maximal connected subgraph in 
which every node has degrees at least k. The core 
number c(v) is the maximum k of all cores it belongs to 
node v. The node iterator core algorithm. The running 
time of this algorithm is O(m3/2). 

E. Forward 

The forward algorithm is an improvement of the 
edge iterator algorithm. This algorithm was proposed 
in [11], [14]  , and they concluded that the forward 
algorithm gives the best result.  

The forward algorithm starts with ordering nodes 
from the lowest degree to the highest. The next step 
creates an empty array A[v] for each node. Then takes 
the lowest degree node v. For each node u ∈ N(v) 
checked if d(v) < d(u), if yes add v to A[u]. The 
intersection of A[v] and A[u] form triangles. The 
running time of this algorithm is O(m3/2). 
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TABLE I.  ALGORITHMS COMPLEXITY 

algorithm complexity 

node iterator O(ndmax
2 ) 

edge iterator O(m. dmax) 

AYZ O(m2γ/γ+1) 

node iterator core O(m3/2) 

forward O(m3/2) 

 

Table.1 presents the computational complexity of 
each algorithm. The complexity expects the worst case 
of running times. 

 

III. EXPERIMENTS AND EVALUATION 

The algorithms were evaluated using several real-
world networks taken from the network repository [16]. 
We selected some of the networks that are very 
sparse. The selected network datasets have various 
sizes and sparsity. 

As mentioned in the previous section Schank [11], 
[14] have presented the comprehensive experimental 
study of several known triangle counting algorithms 
and several types of datasets. They proposed the 
forward algorithm, which has good performance for 
most of the datasets evaluated, and mention that two 
basic algorithm node iterator and edge iterator work 
well for graphs that the degrees do not differ much 
from the average degree. Furthermore, our experiment 
focused on analyzing the performance of several 
known algorithms for very sparse networks. 

We present the several network datasets with some 
properties as follows: n = number of nodes, m = 
number of edges, T(G)= number of triangle graph  G, 
dmean = average degree of graph G, Q1, Q2, Q3 = 
the first, the second, and the third quartile of the 
degree distribution, dmax = maximum number of node 
degree, dstd = standard deviation of degree 
distribution. The selected road networks are listed in 
Table II, and Facebook networks are listed in Table III. 

Road networks are undirected graphs, nodes 
represent endpoints and intersections, and edges 
represent roads connecting the intersections or 
endpoints. Facebook networks are also undirected 
graphs, nodes represent people, and edges represent 
the interaction between people. 

Road networks tend to be very sparse. The more 
sparse a graph is, the number of edges is getting 
closer to the number of nodes.  

For example, the road network Italy-osm has 
6.686.493 nodes and 7.013.978. The number of nodes 
is almost equal to the number of edges. And notice 
that the maximum degree is only about 9-12, the mean 
degree is very low, about 2-3 degrees per node, and 

consequences the standard deviation is also very low, 
about 0,41 to 1,02.  

TABLE II.  ROAD NETWORKS PROPERTIES 

 PA IT TX BE 

n 1088092 6686493 1379917 1441295 

e 1541898 7013978 1921660 1549970 

T(G) 67150 7410 82869 2420 

dmean 3 2 3 2 

Q1 2 2 2 2 

Q2 3 2 3 2 

Q3 4 2 3 2 

dmax 9 9 12 10 

dstd 1,02 0,41 1,01 0,49 

PA = road network of Pennsylvania, IT= road network of Italy-osm, TX= road 
network of Texas, BE = road network of belgium-osm 

Facebook networks have different degree distribution 
and statistical properties compared to road networks. 
These networks are also sparse but denser than road 
networks. The average degree of Facebook networks 
is much higher than road networks, 74-102 degrees 
per node, and of course, the standard deviation is also 
higher. And Facebook networks also have a large 
maximal degree. Table III presents the properties of 
facebook networks 

TABLE III.  FACEBOOK NETWORKS PROPERTIES 

 TS IN BR DU 

n 36364 29732 22900 9885 

e 1590651 1305757 852419 506437 

T(G) 11178552 9391083 5369593 5142558 

dmean 87 88 74 102 

Q1 28 30 23 32 

Q2 61 67 54 83 

Q3 116 123 103 148 

dmax 6312 1358 3434 1887 

dstd 104,39 80,06 83,02 91,74 

TS = Texas, IN = Indiana, BR = Barkeley, DU = Duke 

The experiments were running on machine Intel 
core i7 @2.60GHz x 12, 16GB memory, and 64-bit 
machine and using Python3 and compiled with Jupyter 
Notebook.  

Network datasets are given in adjacency list 
representation. The execution times of algorithms were 
measured in seconds. Table IV and Table V show the 
result (time execution) of implementations. 
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TABLE IV.  ROAD NETWORKS 

 PA IT TX BE 

Node Iter 1,581 7,172 1,955 1,479 

Edge Iter 2,660 11,956 3,240 2,539 

AYZ 11,799 70,859 14,682 14,618 

NIC 8,878 48,715 11,556 10,503 

Forward 17,417 88,412 21,906 18,677 

PA = road network of Pennsylvania, IT= road network of Italy-osm, TX=road 
network of Texas, BE = road network of belgium-osm 

Node iterator outperforms other algorithms and 
followed by edge iterator. For more detail, see Fig. 2. 
Even though node iterator has running time O(ndmax

2 ), 
the time execution result tends to be low. This is 
obviously due to road networks having a low maximal 
degree and standard deviation. The smaller the 
maximum degree, the smaller the running time. It can 
be predicted that for nodes that have a large maximum 
degree, the running time will also be greater. Even for 
a large maximum degree, the running time will be 
close to O(n3). 

 

Fig. 1. Road Networks 

On the other side, the algorithms complexities of 
AYZ counting, node iterator core, and forward do not 
rely on the measure of the maximum of degree but the 
size of the edge. Then we will see the performance 
algorithms for Facebook networks. Look at Table V 
and Fig. 3. 

TABLE V.  FACEBOOK NETWORKS 

 TS IN BR DU 

Node Iter 554,849 257,026 175,812 132,224 

Edge Iter 64,030 40,801 26,419 17,839 

AYZ 109,112 52,731 20,143 5,291 

NIC 70,865 45,453 29,538 18,969 

Forward 14,088 11,320 7,211 4,495 

TS = Texas, IN = Indiana, BR = Barkeley, DU = Duke 

In contrast to road networks, Facebook networks 
are not as sparse as road networks but denser. 
Facebook networks have a much larger maximal 
degree and standard deviation than road networks.  

Table V shows that the forward algorithm 
outperforms other algorithms. The second position is 
obtained by AYZ and edge iterator alternately.  

 

Fig. 2. Facebook Networks 

Note that the size of Facebook networks is smaller 
than road networks. However, as previously 
discussed, node iterator will give poor performance if 
the maximum degree is enormous. For more detail, 
see Fig. 2.  

Optimization: deletion of nodes that have d(v)<2 

The following optimization method is deleting or 
removing all nodes with d(v) < 2. Deleting all nodes 
with d(v) < 2 repeatedly until no node has degrees less 
than two. After node deletion, counting triangles of 
graph G. 

If d(v) < 2, node v must not have a triangle. 
Deleting or removing node v will not reduce the 
number of triangles. In fact, this will reduce graph size 
and complexity. See Fig. 1. 

                

Fig. 3. (a): Graph G, (b): Graph G’ 

Graph G has two triangles, namely (1, 5, 6) and (1, 
2, 7), if we delete all node which has d(v) < 2 
repeatedly until no node has d(v) < 2 (Fig. 2(b).) the 
number and the lists of triangles remain the same. 

We evaluated these optimization methods for all 
triangle counting algorithms above, but we got good 
speedup for the node iterator algorithm, especially for 
the road networks dataset. See Table VI. 
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TABLE VI.  FACEBOOK NETWORKS 

data set 
without del (d(v) < 

2) 
del d(v) < 2 

roadNet-PA 1,581 1,379 

road-italy 7,172 6,811 

roadNet-TX 1,955 1,676 

road-belgium 1,479 1,429 

socfb-Texas84 554,849 571,382 

socfb-Indiana 257,026 247,907 

socfb-Berkeley13 175,812 172,956 

socfb-Duke14 132,224 137,309 

 

A very sparse graph will have the number of edges 
close to nodes. So most of the nodes will have 
degrees less than two. Deleting all nodes with d(v) < 2 
will reduce the size and complexity of the graph. 

IV. CONCLUSION 

There is no efficient algorithm for all type datasets. 
Old algorithms not always have the worst 
performance. And the latest algorithm is not 
necessarily the best. 

Running time or computational complexity is a 
measure of algorithm efficiency, but the execution time 
may be different in real practice. Node iterator 
algorithm probably has the worst complexity, but no 
problem when the networks are very sparse and low 
maximal degree. Even node iterator performs well for 
that condition. The distribution and statistical degrees 
are strongly related to the time execution.  

Deleting or removing nodes that have a degree less 
than two will reduce the size and complexity of the 
graph, especially for the very sparse graph. 
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