
Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 1, January - 2022

www.jmess.org

JMESSP13420821 4213

Evaluation of Exact Triangle Counting for

Huge Sparse Graphs

Fitriyani
1

Institut Teknologi Bandung, School of Electrical
Engineering and Informatics

Bandung, Indonesia
fitriyani@telkomuniversity.ac.id

Benhard Sitohang
2

Institut Teknologi Bandung, School of Electrical
Engineering and Informatics

Bandung, Indonesia
benhard@stei.itb.ac.id

Achmad Imam Kistijantoro
3

Institut Teknologi Bandung, School of Electrical Engineering and Informatics
Bandung, Indonesia

imam@informatika.ac.id

Abstract—The growth of information technology

increases the amount of data generated. Most of

the resulting data can be represented as a

network or graph. Graph analysis is needed to

extract the information contained in the data.

Triangle counting is one of the fundamental and

important metrics in complex networks analysis.

Due to the resulting graphs being very large and

diverse behaviors, counting the number of

triangles in a graph is a challenge. There are many

methods or algorithms to count the number of

triangles in a graph.

Most real networks are sparse, and some of

them are very sparse. Previous research mentions

that two basic triangle counting algorithms, node

iterator and edge iterator work well for this type of

graph. We evaluated several known exact triangle

counting algorithms and used very large sparse

graph datasets. Furthermore, we found that node

iterator performs the best performance. Although

generally, node iterator has worse complexity

than other algorithms, it provides good

performance for data that have a small maximum

degree. Then we optimize the node iterator

algorithm by deleting the nodes with d(v) < 2

before counting the triangles. This optimization

gives significant speedup for the node iterator

algorithm.

Keywords—component; triangle counting,

huge sparse graphs, algorithms performance,

optimization

I. INTRODUCTION

Graphs and networks are a ubiquitous model
representation of real-life problems to extract
information inherent in today's data. For example, we
can represent how Facebook works by imagining the

connection and interaction between friends. Then we
can find out what communities are on Facebook, who
are influencers, who are spreading news, and so on.

A triangle in an undirected graph is a set of three
vertices that connect each other. Finding, counting,
and listing triangles in a graph becomes an interesting
and important problem. These are because many of
the fundamental and important metrics to extract
information from complex networks used the triangle
concept, such as measuring transitivity [1] and
clustering coefficient [2]. Triangles concept has also
been used in several real-world applications, such as
spam filtering [3] and community detection [4] .

Triangle counting problems have been discussed
for years with various approaches [5]–[10]. And the
comprehensive reviews have been presented well in
previous research [11]–[13].

Schank [11], [14] evaluates triangles exact
counting and listing algorithm with various degree
distribution. He found that the forward algorithm gives
the best performance. Latapy [12] evaluated existing
algorithms and proposed a new algorithm concerning
space needs.

Hasan [13] divides three approaches of triangles
counting algorithms in random access data: exact
triangle counting, approximate triangle counting, and
distributed and parallel triangle counting. The last
approach should also be combined with exact and
approximate triangle counting approaches. Although
approximation approaches are much faster than exact
approaches, exact approaches provide an actual
number of triangles.

Real-life networks tend to be very large, sparse,
and skewed. The size of graphs is very large and
increasing rapidly. Graph today has million even billion
nodes and increases every day. On the other hand,
counting triangles in a large graph is computationally
expensive. So finding an efficient algorithm is an
important issue.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 1, January - 2022

www.jmess.org

JMESSP13420821 4214

We focused on graphs that are very sparse, such
as road networks, protein networks, and some of the
social networks. The very sparse networks are the
networks that have a small maximum degree, small
average degree, and low standard deviation. In other
words, the nodes of the graph have degrees that do
not differ much from the average of degrees.

We have two contributions to this paper:

i. an experimental evaluation of some existing
exact triangle counting algorithms for very
sparse networks,

ii. the optimization of triangle counting for very
sparse networks by deleting nodes that have
d(v) < 2.

We expect that certain algorithms will be efficient
for some datasets but not for others. Graph size,
degree, and other graph properties distribution will be
related to the performances of the algorithms. And
deleting nodes with d(v)<2 of very sparse networks will
significantly reduce the running time of algorithms. We
evaluated several known algorithms using various
sizes and sparsity of graph datasets.

II. EXACT TRIANGLE COUNTING ALGORITHMS

Consider an undirected, unweighted, and simple
graph G = (V,E) with n = |V| vertices or nodes and m =
|E| edges. The degrees of node v denote as d(v) and
the maximal degree of graph G as dmax(G). The
neighborhood of node v is denoted by N(v).

A triangle of graph G is a set of three vertices {u, v,
w} that contain edges = {(u,v), (v,w), (w,u)}. The
number triangle of node v denoted as T(v), and the
total triangle of graph G denote as T(G).

The earliest triangle counting algorithm is based on
matrix multiplication of adjacency matrix. Consider
graph G is an undirected graph, and A[G] is the
adjacency matrix of graph G. Then the total number

triangle in graph G, T(G) =
1

6
Tr(A3), where Tr is the

sum along diagonals of the matrix. The complexity of
this algorithm is O(n3). This algorithm also can be
implemented with fast matrix multiplication with

running time O(nγ) , with γ = 2,373 , γ is fast matrix
multiplication exponent[15]

There are various algorithms for exact triangles
counting. Most of them rely on matrix multiplication,
node counting, or edge counting. We selected several
known algorithms to be evaluated, two basic
algorithms (node iterator and edge iterator) and three
great modified algorithms (AYZ, node iterator core,
and forward).

A. Node Iterator

Node iterator examines each node that has pair of
neighbors connected and counts it. The algorithm

iterates all nodes of graph G, say v. For (u, w) ∈ adj
(v), if there is an edge that exists between u and w, {u,
v, w} forms a triangle, and otherwise not. The total
number of triangles in graph G is the sum of all node's

triangles divided by 3. Each triangle will be counted
three times, so the division is needed [13]. To avoid
double-counting, we can add boundary v<u<w. The

running time of this algorithm is O(ndmax
2).

B. Edge Iterator

Edge iterator iterates over each edge to examine if
the edge contains a triangle. An edge e = (u, v) will
form a triangle {u, v, w} if u and w have a common
neighbor w. Therefore we can count the number
triangle of edge e = (u, v) by counting the intersections
between the neighbors of u and v. The total number
triangle of graph G is a cumulative sum of triangles
containing each edge divided three. As node iterator,
to avoid double-counting, we can add boundary v<u<

w. The running time of this algorithm is O(m. dmax) [13].

C. AYZ-Counting

Alon, Yuster, and Zwick [7], called AYZ, have
proposed a triangle counting algorithm which is

O(m2γ/γ+1)running time. AYZ algorithm divides nodes
become two categories, 'low degree' and 'high degree'.

It defines threshold ∂ =
γ−1

γ+1
, γ = 2,373where γ is fast

matrix multiplication exponent[15]. Low degree nodes

are nodes that have degrees less than ∂ , and
otherwise, are high degree nodes. The number triangle
of low degree nodes counted using node iterator
algorithms and (fast) matrix multiplication used to
count triangle of high degree nodes.

D. Node Iterator Core

Node iterator core is the modification of the node
iterator algorithm that uses the core concept. This
algorithm takes a node with a currently minimal degree
and counts its triangles using the node iterator
algorithm, then removes the node from graph G [11],

[14]. Count and remove all nodes v with(v) ≤ √m. The
sum triangles of removing nodes and remaining graph

are the total number triangles of graph G. The k-core
of graph G is the maximal connected subgraph in
which every node has degrees at least k. The core
number c(v) is the maximum k of all cores it belongs to
node v. The node iterator core algorithm. The running
time of this algorithm is O(m3/2).

E. Forward

The forward algorithm is an improvement of the
edge iterator algorithm. This algorithm was proposed
in [11], [14] , and they concluded that the forward
algorithm gives the best result.

The forward algorithm starts with ordering nodes
from the lowest degree to the highest. The next step
creates an empty array A[v] for each node. Then takes
the lowest degree node v. For each node u ∈ N(v)
checked if d(v) < d(u), if yes add v to A[u]. The
intersection of A[v] and A[u] form triangles. The
running time of this algorithm is O(m3/2).

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 1, January - 2022

www.jmess.org

JMESSP13420821 4215

TABLE I. ALGORITHMS COMPLEXITY

algorithm complexity

node iterator O(ndmax
2)

edge iterator O(m. dmax)

AYZ O(m2γ/γ+1)

node iterator core O(m3/2)

forward O(m3/2)

Table.1 presents the computational complexity of
each algorithm. The complexity expects the worst case
of running times.

III. EXPERIMENTS AND EVALUATION

The algorithms were evaluated using several real-
world networks taken from the network repository [16].
We selected some of the networks that are very
sparse. The selected network datasets have various
sizes and sparsity.

As mentioned in the previous section Schank [11],
[14] have presented the comprehensive experimental
study of several known triangle counting algorithms
and several types of datasets. They proposed the
forward algorithm, which has good performance for
most of the datasets evaluated, and mention that two
basic algorithm node iterator and edge iterator work
well for graphs that the degrees do not differ much
from the average degree. Furthermore, our experiment
focused on analyzing the performance of several
known algorithms for very sparse networks.

We present the several network datasets with some
properties as follows: n = number of nodes, m =
number of edges, T(G)= number of triangle graph G,
dmean = average degree of graph G, Q1, Q2, Q3 =
the first, the second, and the third quartile of the
degree distribution, dmax = maximum number of node
degree, dstd = standard deviation of degree
distribution. The selected road networks are listed in
Table II, and Facebook networks are listed in Table III.

Road networks are undirected graphs, nodes
represent endpoints and intersections, and edges
represent roads connecting the intersections or
endpoints. Facebook networks are also undirected
graphs, nodes represent people, and edges represent
the interaction between people.

Road networks tend to be very sparse. The more
sparse a graph is, the number of edges is getting
closer to the number of nodes.

For example, the road network Italy-osm has
6.686.493 nodes and 7.013.978. The number of nodes
is almost equal to the number of edges. And notice
that the maximum degree is only about 9-12, the mean
degree is very low, about 2-3 degrees per node, and

consequences the standard deviation is also very low,
about 0,41 to 1,02.

TABLE II. ROAD NETWORKS PROPERTIES

 PA IT TX BE

n 1088092 6686493 1379917 1441295

e 1541898 7013978 1921660 1549970

T(G) 67150 7410 82869 2420

dmean 3 2 3 2

Q1 2 2 2 2

Q2 3 2 3 2

Q3 4 2 3 2

dmax 9 9 12 10

dstd 1,02 0,41 1,01 0,49

PA = road network of Pennsylvania, IT= road network of Italy-osm, TX= road
network of Texas, BE = road network of belgium-osm

Facebook networks have different degree distribution
and statistical properties compared to road networks.
These networks are also sparse but denser than road
networks. The average degree of Facebook networks
is much higher than road networks, 74-102 degrees
per node, and of course, the standard deviation is also
higher. And Facebook networks also have a large
maximal degree. Table III presents the properties of
facebook networks

TABLE III. FACEBOOK NETWORKS PROPERTIES

 TS IN BR DU

n 36364 29732 22900 9885

e 1590651 1305757 852419 506437

T(G) 11178552 9391083 5369593 5142558

dmean 87 88 74 102

Q1 28 30 23 32

Q2 61 67 54 83

Q3 116 123 103 148

dmax 6312 1358 3434 1887

dstd 104,39 80,06 83,02 91,74

TS = Texas, IN = Indiana, BR = Barkeley, DU = Duke

The experiments were running on machine Intel
core i7 @2.60GHz x 12, 16GB memory, and 64-bit
machine and using Python3 and compiled with Jupyter
Notebook.

Network datasets are given in adjacency list
representation. The execution times of algorithms were
measured in seconds. Table IV and Table V show the
result (time execution) of implementations.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 1, January - 2022

www.jmess.org

JMESSP13420821 4216

TABLE IV. ROAD NETWORKS

 PA IT TX BE

Node Iter 1,581 7,172 1,955 1,479

Edge Iter 2,660 11,956 3,240 2,539

AYZ 11,799 70,859 14,682 14,618

NIC 8,878 48,715 11,556 10,503

Forward 17,417 88,412 21,906 18,677

PA = road network of Pennsylvania, IT= road network of Italy-osm, TX=road
network of Texas, BE = road network of belgium-osm

Node iterator outperforms other algorithms and
followed by edge iterator. For more detail, see Fig. 2.
Even though node iterator has running time O(ndmax

2),
the time execution result tends to be low. This is
obviously due to road networks having a low maximal
degree and standard deviation. The smaller the
maximum degree, the smaller the running time. It can
be predicted that for nodes that have a large maximum
degree, the running time will also be greater. Even for
a large maximum degree, the running time will be
close to O(n3).

Fig. 1. Road Networks

On the other side, the algorithms complexities of
AYZ counting, node iterator core, and forward do not
rely on the measure of the maximum of degree but the
size of the edge. Then we will see the performance
algorithms for Facebook networks. Look at Table V
and Fig. 3.

TABLE V. FACEBOOK NETWORKS

 TS IN BR DU

Node Iter 554,849 257,026 175,812 132,224

Edge Iter 64,030 40,801 26,419 17,839

AYZ 109,112 52,731 20,143 5,291

NIC 70,865 45,453 29,538 18,969

Forward 14,088 11,320 7,211 4,495

TS = Texas, IN = Indiana, BR = Barkeley, DU = Duke

In contrast to road networks, Facebook networks
are not as sparse as road networks but denser.
Facebook networks have a much larger maximal
degree and standard deviation than road networks.

Table V shows that the forward algorithm
outperforms other algorithms. The second position is
obtained by AYZ and edge iterator alternately.

Fig. 2. Facebook Networks

Note that the size of Facebook networks is smaller
than road networks. However, as previously
discussed, node iterator will give poor performance if
the maximum degree is enormous. For more detail,
see Fig. 2.

Optimization: deletion of nodes that have d(v)<2

The following optimization method is deleting or
removing all nodes with d(v) < 2. Deleting all nodes
with d(v) < 2 repeatedly until no node has degrees less
than two. After node deletion, counting triangles of
graph G.

If d(v) < 2, node v must not have a triangle.
Deleting or removing node v will not reduce the
number of triangles. In fact, this will reduce graph size
and complexity. See Fig. 1.

Fig. 3. (a): Graph G, (b): Graph G’

Graph G has two triangles, namely (1, 5, 6) and (1,
2, 7), if we delete all node which has d(v) < 2
repeatedly until no node has d(v) < 2 (Fig. 2(b).) the
number and the lists of triangles remain the same.

We evaluated these optimization methods for all
triangle counting algorithms above, but we got good
speedup for the node iterator algorithm, especially for
the road networks dataset. See Table VI.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 8 Issue 1, January - 2022

www.jmess.org

JMESSP13420821 4217

TABLE VI. FACEBOOK NETWORKS

data set
without del (d(v) <

2)
del d(v) < 2

roadNet-PA 1,581 1,379

road-italy 7,172 6,811

roadNet-TX 1,955 1,676

road-belgium 1,479 1,429

socfb-Texas84 554,849 571,382

socfb-Indiana 257,026 247,907

socfb-Berkeley13 175,812 172,956

socfb-Duke14 132,224 137,309

A very sparse graph will have the number of edges
close to nodes. So most of the nodes will have
degrees less than two. Deleting all nodes with d(v) < 2
will reduce the size and complexity of the graph.

IV. CONCLUSION

There is no efficient algorithm for all type datasets.
Old algorithms not always have the worst
performance. And the latest algorithm is not
necessarily the best.

Running time or computational complexity is a
measure of algorithm efficiency, but the execution time
may be different in real practice. Node iterator
algorithm probably has the worst complexity, but no
problem when the networks are very sparse and low
maximal degree. Even node iterator performs well for
that condition. The distribution and statistical degrees
are strongly related to the time execution.

Deleting or removing nodes that have a degree less
than two will reduce the size and complexity of the
graph, especially for the very sparse graph.

REFERENCES

[1] F. Harary and H. J. Kommel, “Matrix measures for
transitivity and balance,” J. Math. Sociol., vol. 6,
no. 2, pp. 199–210, 1979, doi:
10.1080/0022250X.1979.9989889.

[2] D. J. Watts and S. H. Strogatz,
“Watts_Strogatz_Collective_dynamics_small_worl
d_networks.1998,” Nature, vol. 393, no. June, pp.
440–442, 1998.

[3] M. Rahman and M. Al Hasan, “Sampling triples
from restricted networks using MCMC strategy,”
CIKM 2014 - Proc. 2014 ACM Int. Conf. Inf.
Knowl. Manag., pp. 1519–1528, 2014, doi:
10.1145/2661829.2662075.

[4] G. Palla, I. Derényi, I. Farkas, and T. Vicsek,
“Uncovering the overlapping community structure
of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005,
doi: 10.1038/nature03607.

[5] A. Itai and M. Rodeh, “Finding a minimum circuit
in a graph,” Proc. Annu. ACM Symp. Theory
Comput., vol. 02-04-May-, no. June, pp. 1–10,
1977, doi: 10.1145/800105.803390.

[6] N. Chiba and T. Nishizeki, “Arboricity and
Subgraph Listing Algorithms.,” SIAM J. Comput.,
vol. 14, no. 1, pp. 210–223, 1985, doi:
10.1137/0214017.

[7] N. Alon, R. Yusfer, and U. Zwick, “Finding and
counting given length cycles,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 855 LNCS,
pp. 354–364, 1994, doi: 10.1007/bfb0049422.

[8] S. Chu and J. Cheng, “Triangle listing in massive
networks,” ACM Trans. Knowl. Discov. Data, vol.
6, no. 4, 2012, doi: 10.1145/2382577.2382581.

[9] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis,
“Efficient semi-streaming algorithms for local
triangle counting in massive graphs,” Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp.
16–24, 2008, doi: 10.1145/1401890.1401898.

[10] D. Coppersmith and S. Winograd, “Matrix
Multiplication via Arithmetic Progressions
Department of Mathematical Sciences Y [J ’ Jz /’/
r,” Symb. Comput., no. 9, pp. 251–280, 1990.

[11] T. Schank and D. Wagner, “Finding, counting and
listing all triangles in large graphs, an
experimental study,” Lect. Notes Comput. Sci.,
vol. 3503, pp. 606–609, 2005, doi:
10.1007/11427186_54.

[12] M. Latapy, “Main-memory triangle computations
for very large (sparse (power-law)) graphs,”
Theor. Comput. Sci., vol. 407, no. 1–3, pp. 458–
473, 2008, doi: 10.1016/j.tcs.2008.07.017.

[13] M. Al Hasan and V. S. Dave, “Triangle counting in
large networks: a review,” Wiley Interdiscip. Rev.
Data Min. Knowl. Discov., vol. 8, no. 2, 2018, doi:
10.1002/widm.1226.

[14] T. Schank, “Algorithmic aspects of triangle-based
network analysis,” Phd Comput. Sci. Univ.
Karlsruhe, 2007, [Online]. Available:
http://digbib.ubka.uni-
karlsruhe.de/volltexte/documents/4541.

[15] F. Le Gall, “Powers of tensors and fast matrix
multiplication,” Proc. Int. Symp. Symb. Algebr.
Comput. ISSAC, pp. 296–303, 2014, doi:
10.1145/2608628.2608664.

[16] Ryan A, Rossi and Nesreen K. Ahmed, The
Network Data Repository with Interactive Graph
Analytics and Visualization,
https://networkrepository.com/, 2015

http://www.jmess.org/
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/4541
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/4541
https://networkrepository.com/,

