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     Abstract—Supersonic flows near a cylinder, placed 

near the end of channel, are studied. Channels of 

rotation with the interval of cross-sectional area de-

creasing are considered. Two-dimensional Euler 

equations are solved by two methods, namely, by 

the explicit two step Godunov type method and by 

the implicit Runge-Kutta method. Artificial viscosity 

of Smagorinsky type is applied in both methods. 

Self-oscillatory regimes are studied at free-stream 

Mach numbers of 3.5 to 4.5. Two types of unsteady 

regimes are observed.  

Keywords—self-oscillations, Euler equations, 

numerical studies, channels; 

  1. Introduction 

  This paper is devoted to continuation of CFD studies 

of new unsteady flows, carried out in [1-7]. Namely, new 

family of self-oscillatory flows near the pair cylinder - 

open channel was found in [6], where the interval of free 

stream Mach numbers 3≤M  ≤4.5 was considered. Hy-

personic flows with free stream Mach numbers 5≤ 

M  ≤7.5 are studied in [7]. It is found in [6,7], that un-

steady regimes exist, only if intersection points of 

available in these flows two shock waves are not too far 

from the tube edge. Two types of self-oscillatory flows 

are observed in [7]. If contact discontinuity, issued from 

the intersection point, is directed always above the tube 

edge, flows of the first type take place. If this contact 

discontinuity is directed inside or outside a tube alter-

nately, second type of unsteady flows takes place. Pre-

sent paper is devoted to a search of these regimes in the 

interval 3.5≤ M  ≤4.5.  

  It seems, that flows of the first type of this family have 

the oscillation mechanism, similar to this mechanism of 

flows around spiked bodies [1,8-10].    

              

        2. CFD design approach 

   Numerical calculations deal with dimensionless var-

iables. These variables are defined as relations of initial 

variables and next free stream parameters or the body 

size: p   - for pressure, ρ   - for density, 
 p  - for 

a velocity, r tub =y(C)-y(H) (the maximum inner channel 

radius, see fig. 1) – for space variables, r tub /
 p  - 

for time.  

   2.1. Boundary conditions.  

   Fig. 1 represents schematically a numerical domain 

and a mesh near a cylindrical body, placed in an open 

channel. All variables are prescribed at the inflow 

boundary (HA). Parameters of the uniform stream are set 

at this boundary, namely, Mach number M=M  , density 

ρ=1, pressure p=p  =1 (in dimensionless form), the radial 

velocity v=0. The normal velocity is equal to zero and 

other variables are extrapolated at solid surfaces 

(CB,CD,FE,FG). The radial velocity v=0 at the symmetry 

axis HG, other variables are extrapolated. Extrapolation 

conditions are used at the tube exit DE and at the AB 

boundary. 
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Fig. 1. Schematic representation of a numerical domain and of a mesh. 

          The channel form at the [a,b] interval of 

cross-sectional area decreasing is defined by the for-

mulae 

Y(x)=R tub -16h(x-a) 
2

(x-2b+a)
2

/(b-a)
4

.           (1) 

   2.2. Numerical methods.  

   Every flow is calculated here by two methods: by the 

second order two step version of the Godunov con-

servative method [11] and by the implicit conservative 

Runge-Kutta method [12], which is third order of ap-

proximation initially, but this order is reduced to the 

second one as a result of usage of Smagorinsky vis-

cosity. Comparing of these two methods data allows 

to evaluate accuracy of numerical results. Approxi-

mate linear solution of the Riman problem is applied in 

the Godunov method. Algorithms of slopes limitation of 

left and right extrapolation curves are used to damp 

false oscillations near discontinuities. Review of such 

algorithms of damping false oscillations is presented in 

[13]. 

   Both methods are modified to provide possibility of 

solution calculations in complicated domains. Namely, 

special versions of codes are developed for the case 

when functions x=x( ,η), y=y( ,η) perform mapping 

of the unit square with excisions {0≤ ≤ 0 , 0≤η
 

≤η 0 }, { 1 ≤  ≤1, 0≤η ≤η 1 } to a curvilinear quad-

rangle with curvilinear quadrangular excisions (see fig. 

1). These codes allow carrying out calculations with-

out dividing complicated domains into subdomains.   

   2.3 Adaptive version of Smagorinsky viscosity. 

   Navier-Stokes viscous terms are included to Euler 

equations and the artificial viscosity of Smagorinsky 

type [14] is used for additional damping of false oscilla-

tions. To ensure absence of false oscillations, the adap-

tive version of Smagorinsky viscosity is applied: 

µ= ρ|S|Δ
2
[wC

2

1 +(1-w)C
2

2 ], |S| = (2S ik S ik )
2/1
,    (2) 

Δ= Δ Δη (x  y

- y  x


)/ 

(max(Δ
2
( x 2


+y 2


), Δη

2
( x 2


+y 2


)))

2/1
, 

S ik =  u i / x
k
+ u

k
/ x i )/2,   

where functions x=x( ,η), y=y( ,η) perform coordi-

nate transformation, Δ =1/N


, Δη=1/N ,  N


, N  - 

numbers of intervals of the quadrangular mesh in a unit 

square, 1≥C 1≥C 2 ≥0 – two constants, defining distribu-

tion of turbulent viscosity in the flow, w – weight function.  

   Weight function w should have most values, closed 

to unity, in vicinities of shift layers and should have least, 

but positive, values beyond these vicinities. Different 

versions of this function were tried. Preferable results 

are achieved, if this function has variables |S|, |rot U|. To 

illustrate the relation of this parameters let consider the 

ideal shift layer {u(x,y)=u°(y), v(x,y)=0, 0 ≤y≤1, -∞≤x≤∞}. 

It is easy to receive, that the equality |S|=|rot U| takes 

place since only single derivative  u/ y distinguishes 

from zero. Of course, this equality is not true for real shift 

layers. Nevertheless the relation |(|S|-|rot U|)| «(|S|+|rot 

U|) takes place for large Reynolds numbers. So next 

simple formulae satisfies to requirements written above: 

w=1/[1+Cₒ(|rot U|
2
/|S|

2
-1)

2
],                    (3) 

where Cₒ should be chosen in trial computations. 

It should be noted, that RANS have parabolic type, if 

turbulent viscosity does not depend on first or higher 

derivatives of solution functions. Since turbulent viscosity 

(2) depends on first derivatives of solution components, 

type of equations may be undefined. It is feared that the 

false oscillations generation is resulted from this type 
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violation at large values of turbulent viscosity. To elimi-

nate this violation, the averaging two steps procedure is 

used. This procedure provides “smoothing” of turbulent 

viscosity, consequently, improves convergence to 

steady state solutions and prevents false unsteadiness. 

µ 1 = 








m

m

µ ( +c, η ) (m  ,c)dc,             (4) 

 µ fin = 








m

m

µ 1 ( , η+c) (m η, c)dc,       

 ( ε ,c)= (1.2- c
2

/ε
2

) / 



(1.2- c

2
/ε

2
)dc. 

 

  Grids 515586 and 715 816 are used in calcula-

tions. Weight function constant (3) is chosen as C 0 =12. 

Adaptive turbulent viscosity (2) constants are chosen as 

C 1  =2.5, C 2 =0.21 (this value is standard in LES inves-

tigations).  Parameter m in averaging formulas (4) is 

equal to 5 for the 515  586 grid and m=7 for the 

715 816 grid. CFL numbers were limited by 0.5 in 

previous calculations [6-7] to provide stability of explicit 

Godunov method. Necessity of more strong limitation is 

discovered here due to increased values of the Smagi-

rinsky turbulent viscosity near contact discontinuities. So 

the interval 0.25-0.35 of CFL numbers is kept for Go-

dunov method in present computations. Runge-Kutta 

method computations are provided with double time 

steps. As a result this method turns out to be more ef-

fective, then Godunov method, despite the fact that 

Runge-Kutta method requires more operations for one 

time step.   

 

          3. Results and discussion 

         CFD studies [6,7] shown, that self-oscillations 

may appear, if two shock waves, induced by braking 

of free stream by the cylinder and by the tube end, 

have intersection point closed to the tube edge (signed 

by C in fig.1). Two types of hypersonic self-oscillatory 

flows are observed in [7].  

         If the contact discontinuity, issued from this point of 

intersection, is directed always above the tube edge and 

moves outside a tube, nearly sinusoidal oscillations of a 

moderate intensity are observed.  

   If this contact discontinuity is directed inside or out-

side the tube alternately, flow contains short time peaks 

of pressure and density near the tube edge. Such com-

plicated oscillations are classified in [7] as oscillations of 

the second type. 

   Present paper is devoted to a search for these two 

self-oscillatory regimes at free stream Mach numbers of 

3.5 to 4.5.    

   Fig. 2  shows density histories at the point C (see fig. 

1) for the self-oscillatory flow with free stream Mach 

number M  =4.5. Godunov type method data are marked 

as G. m., Runge-Kutta method data are marked as R.-K. 

m. This flow is defined by geometry parameters L cyl =1.7 

(the cylinder length), R cyl =.3 (the cylinder radius), 

L tub =1.0 (the channel length), R
min

= R tub -h=1-h=.93 

(the least channel radius), h =.08, a=x(C)+ 0.25L tub , 

b=a+0.1 (see fig. 1 and formulae 1). Density histories, 

presented in fig. 2, illustrates that this flow is nearly pe-

riodic. Calculations for Runge-Kutta method data result 

the T=1.84 period, calculations for Godunov method data 

result the T=1.92 period. Time instant t=t 0 ≈12.85, 

marked in this fig., corresponds approximately to the 

minimal value of pressure at the tube edge. 

 

Fig. 2. Pressure histories, M   =4.5. 

   Figs. 3 and 4 show density distributions for the time 

instants t=t 0  ≈12.85 and for the end time instant 

t=t end ≈13.45.  Godunov type method data for the 

515  586 mesh are pictured. Fig. 3 corresponds to 
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nearly minimal distance of intersection point from the 

tube edge, fig. 4 corresponds to nearly maximal distance 

of this point from the tube edge.  

Fi

g. 3. The density distribution, M  =4.5, t=t 0 . 

 

Fig. 4. The density distribution, M  =4.5, t=t end .    

   It is seen, that the intersection point of two shock 

waves is placed higher of the tube edge in figs 3-4. So, 

figs. 2-4 demonstrate first type of oscillations. 

   Density histories at the tube edge are shown in fig. 5 

for free stream Mach number M  =4.0. Geometry pa-

rameters are L cyl =1.4 (the cylinder length), R cyl =.3 (the 

cylinder radius), L tub =0.8 (the channel length), R min = 

R tub -h=1-h=.96 (the least channel radius), h =.04, 

a=x(C)+ 0.25L tub , b=a+0.1 (see fig. 1). Pressure histo-

ries, presented in fig. 5, illustrates that this flow is nearly 

periodic. Calculations for Runge-Kutta method data re-

sult the T=2.05 period, calculations for Godunov method 

data result the T=2.02 period. Time instant t=t 0 ≈12.85, 

marked in this fig., corresponds to a low  value of 

pressure at the tube edge. 

 

Fig. 5. Pressure histories, M   =4. 

   Figs. 6 and 7 show density distributions for time in-

stants t=t 0  and for the end time instant t=t end ≈15.22. 

These distributions are pictured for Godunov type  

method data, received for the grid 515 586 mesh. 

 

Fig. 6. The density distribution, M   =4, t=t 0 . 

 

Fig. 7. The density distribution, M   =4, t=t end . 

         If to compare figs. 6 and 7, it is seen that the shock 

waves intersection point in fig. 7 is higher, then this point 

in fig. 6. Contact discontinuity, issuing from the point of 
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intersection, changed it’s drift direction and began to 

move above the tube edge, consequently, the current 

adjoined to the contact discontinuity undergoes sudden 

braking, which results compression, producing the 

pressure peak, visible in fig. 5 at the end time instant. 

These flow oscillations may be classified as oscillations 

of the second type. Flow regimes of first type are not 

found for the free stream Mach number M   =4. 

   The least Mach number for which self-oscillatory flows 

are found here is 3.5. Fig. 8 shows density histories at 

point C for the flow with M   =3.5. This flow is defined by 

geometry parameters L cyl =1.8 (the cylinder length), 

R cyl =.3 (the cylinder radius), L tub =1.3 (the channel 

length), R min = R tub -h=1-h=.94 (the least channel radius), 

h =.06, a=x(C)+ 0.2L tub , b=a+0.1 (see fig. 1). Data, 

shown in fig. 8, are received for the 715 816 grid mesh. 

Initial flow fields for these this calculations are received 

by linear interpolation from the 515×586 mesh at initial 

time instant t=7. It is seen, that these density histories 

are nearly periodic. Calculations for Runge-Kutta method 

data result the T=2.24 period, calculations for Godunov 

method data result the T=2.27 period. Time instants 

t=t 0 ≈12.05 and t= t 1 ≈12.55, marked in fig. 8, correspond 

approximately to the minimal and maximal values of 

density. 

 

Fig. 8. Density histories, M   =3.5. 

   Density distributions for this flow at time instants t=t 0  

and t=t 1  are shown in figs. 9 and 10. These pictures are 

received for Runge-Kutta method data. 

 

      Fig. 9. Density distributions, M   =3.5, t=t 0 . 

 

Fig. 10. Density distributions, M   =3.5, t= t 1 . 

         These two figs. show that the shock waves 

intersection point in fig. 10 is higher, then this point in fig. 

9. Contact discontinuity, issuing from the point of inter-

section, changed it’s drift direction and began to move 

above the tube edge, consequently, the current adjoined 

to the contact discontinuity undergoes sudden braking, 

which results compression, visible in fig. 8 at time instant 

t= t1 . Such flow oscillations may be classified as oscilla-

tions of second type.  

         It seems, that flows of the first type of this family have 

the oscillation mechanism, similar to this mechanism of 

flows around spiked bodies [1,8-10]. Namely, a cylinder 

plays role of a spike, and self-oscillations take place, 

when the shock wave, induced by braking of free stream 

near cylinder, and the shock wave, induced by braking of 

free stream near the tube end, intersect in the vicinity of 

the tube edge. Similarly, self-oscillations take place near 

spiked bodies, when the shock wave, induced by a spike, 

and the shock wave, induced by main body, intersect in 

the vicinity of main body. 
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         4. Conclusions 

  Self-oscillatory supersonic flows near the pair cylinder 

- open channels are found in [6]. Self-oscillatory flows 

with hypersonic free stream velocities are studied in [7]. 

Two types of self-oscillatory hypersonic flows are ob-

served in [7]. Self-oscillatory flow of first type takes place, 

if contact discontinuity, issued from the intersection point, 

is directed always above the tube edge. Self-oscillatory 

flows of second type takes place, if contact discontinuity, 

issued from the intersection point, is directed alterna-

tively above or below the tube edge.  

  Here these investigations are continued for free 

stream Mach numbers 3.5≤M  ≤4.5. Self-oscillatory flow 

of the first type is found here only for free stream Mach 

number M   =4.5. Self-oscillatory flows of the second 

type are observed for all considered here free stream 

Mach numbers M   =3.5, 4.0, 4.5.          

  Neither hypersonic, nor supersonic self-oscillatory 

regimes are not found, if the interval of cross-sectional 

area decreasing is absent.  
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