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Abstract— For any problem to be solved, a 
method that adequately accommodates its 
complexity range must first be examined and 
selected. Some methods cannot take care of the 
order or degree of the problems at hand. Yet the 
solution accommodation of few methods has been 
proven theoretical, namely: the QR Decomposition 
and Singular Value Decomposition (SVD). This 
paper compares the QR and SVD methods and 
their speed of convergence. The QR 
Decomposition works faster and could be 
enhanced for better accuracy than the SVD but it 
is limited when a matrix is close to rank-deficient.
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I.  INTRODUCTION  

Numerical analysis has found application in solving 
real problems; particularly problems ranging from 
least square solutions to image and signal processing, 
inverse scattering, inverse problems, and so on. 
Methods propounded and proven have been used in 
recent times to reduce and solve the complexities 
associated with practical entities aside the proven 
theories. Gauss-Jordan, LU (Lower Upper) 
Decomposition, Cholesky Factorization, Singular 
Value Decomposition (SVD), QR Decomposition are 
methods that have found relative use in the real-time 
application and industry. Yet as vibrant as some 
methods may be on paper, they have often lacked the 
capacity and numerical stability to prove systems of 
difficult problems. 
For any problem to be solved, a method that 
adequately accommodates its complexity range must 
first be examined and selected. Some methods 
cannot take care of the order or degree of the 
problems at hand. Yet the solution accommodation of 
few methods has been proven theoretical, namely: the 
QR Decomposition and Singular Value Decomposition 
(SVD). This paper compares the QR and SVD 
methods as used in communications engineering 
problems and their speed of convergence. 

 

II. COMPUTING THE QR  

A. QR DECOMPOSITION 

The QR Decomposition of an m x n- dimensional 
complex-valued matrix A is defined as 
A = QR 
where Q is (m x n) orthonormal column matrix, and R 
is (n x n) upper triangular matrix. The QR 
decomposition avoids the shortcomings of Normal 
Equations Method. The Normal Equations Method 
(e.g. Cholesky Factorization) has poor system 
conditioning and instability [1] but seems to be 
superior to classical Gram-Schmidt orthonormalization 
process. The QR decomposition uses the orthogonal 

methods, where Q ∈R 
mxn

 matrix is the orthonormal 
columns of matrix A. 

B. ORTHOGONAL MATRIX 

A matrix is orthogonal if its columns are unit length 
and mutually perpendicular [2]. A matrix Q ∈R 

mxn
 with 

m ≥ n, has orthonormal columns if all columns in Q 
are orthogonal to every other column and are 
normalized [1]. If a matrix Q is orthogonal, then 
Q

T
Q = QQ

T
 = I 

 where Q
T
 is the transpose of matrix Q, and I is the 

Identity matrix. Then it also holds that Q
-1

 = Q
T
, 

therefore, if Q is orthogonal, then Q
T
 is also 

orthogonal. 

III. COMPUTATION OF QR DECOMPOSITION  

QR decomposition is done by reducing A to an upper 
triangular matrix Q by applying the orthogonal 
transformations: Gram-Schmidt or Householder 
Reflectors. For the purpose of this work, the 
Householder reflection is closely examined. 

A. HOUSEHOLDER TRANSFORMATION  

A Householder matrix—sometimes called 
Householder reflection [3]—is defined by a nonzero 
vector v, and it is just a reflection along the v direction 

[2]. It has the form H ∈ R 
nxn

 , where H = I - 2
𝑣𝑣𝑇

𝑣𝑇𝑣
 

Given a vector x, the reflection that can transform x 
into a direction parallel to some unit vector y can be 
found to be: 

 If H = I - 2
𝑣𝑣𝑇

𝑣𝑇𝑣
 , then we can have Hx = I - 2

vvT

vTv
x 
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B. Applying Householder Transformation  

The QR transformation is first to zero out everything in 
the first column below the (1, 1) entry of a matrix A. 
Given a (4x3) matrix A as 

 [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑎41 𝑎42 𝑎43

]  

 
A reflection H1 is constructed such that  

H1A =  

[
 
 
 
 
𝑟11 𝑟12 𝑟13

0 𝑎22
(1)

𝑎23
(1)

0 𝑎32
(1)

𝑎33
(1)

0 𝑎42
(1)

𝑎43
(1)

]
 
 
 
 

,  

and next a reflection is used to nullify 𝑎𝑖2
(1)

,  i = 3: 4 

P2 [

𝑎22
(1)

𝑎32
(1)

𝑎42
(1)

]  = [
𝑟22

0
0

], to move on, apply the transformation 

H2 = [
1 0
0 𝑃2

] to obtain  

H2H1A = 

[
 
 
 
 
𝑟11 𝑟12 𝑟13

0 𝑟22 𝑟23

0 0 𝑎33
(2)

0 0 𝑎43
(2)

]
 
 
 
 

.   

This is repeated on the third column to finally have 

H3H2H1A = [

𝑟11 𝑟12 𝑟13

0 𝑟22 𝑟23

0 0 𝑟33

0 0 0

].  

Q is obtained from the Householder Reflection as, 
Q = (H1H2…Hn)

-1
 = (H1H2…Hn)

T
 = H1

T
H2

T
…Hn

T
 = 

H1H2…Hn.   
It must be noted that Q does not need explicit 
construction. It is embedded in the Householder 
reflection. It makes the method easier to use. 
 

 

IV. SINGULAR VALUE DECOMPOSITION (SVD) 

SVD is a factorization of a matrix A into the product of 
three matrices A= UDV

T
. Often, the nonzero singular 

values of A are computed by an eigenvalue 
computation for the normal matrix A

T
A. However, this 

method has been found to be numerically unstable as 
used in the Normal Equations (e.g. Cholesky). 
Optionally, the Householder reflection is used to 
transform A to a bi-diagonal form and then into a 
diagonal form using two sequences of orthogonal 
matrices. Take note that has the latter method is 
done, computing complexity of SVD has been found 
to be approximately 2mn

2
 + 11n

3
 [3].  

V. COMPARISON OF THE QR AND SVD USING 

A RECTANGULAR MATRIX 

 

A. SVD SOLUTION 

For the purpose of comparison, an example of a 
rectangular matrix is given and conclusions are drawn 

from the arrays of solution steps. Considering a given 
matrix [13]  

A = [

1 −1 4
1 4 −2
1 4 2
1 −1 0

]  

To compute the SVD, matrix A must be multiplied by 
its transpose to obtain a square matrix. Since the 
eigenvector method is the elementary means of 
calculating SVD aside the householder’s 
transformation, eigenvalue of a non-square matrix 
cannot be found, therefore A is multiplied by its 
transpose. The result is 

[

18 −11 5 2
−11 21 13 −3
5 13 25 −3
2 −3 −3 2

].  

The matrix’s diagonal acts as a mirror with the lower 
triangle equal to the upper triangle. The eigenvalue of 

the matrix was found to be[

37.6
25.5
2.1
0.8

]. These values are 

the singular vectors, which are used as the diagonals 
of D, also it should be noted that the eigenvalues of 
AA

T
 and A

T
A will always be the same. Next, the 

singular vector values are used to obtain the 

eigenvectors, which is [

0.2 −0.8 −0.4 0.4
−0.7 0.3 −0.4 0.6
−0.7 −0.6 0.4 −0.3
0.1 0.0 0.7 0.7

].   

 
Having obtained this, the Gram-Schmidt 
orthonormalization method is used to normalize the 
column vectors to give the value of U as  

 [

−0.2 −0.8 0.4 0.4
0.7 0.3 0.6 −0.4
0.7 −0.6 −0.3 0.4

−0.1 0.0 0.7 0.7

] .  

The value of V is obtained from A
T
A, which 

equals[
4 6 0
6 34 −4
0 −4 24

]. The Eigen vector obtained is 

[
−1.0 −0.2 0.1
0.2 −0.9 0.3
0.0 0.3 1.0

]  

 Performing the Gram-Schmidt Orthonormalization 
method on the eigenvector matrix,  

V =  [
−0.98 −0.196 0.065
0.196 −0.98 0.522
0.0 0.0 0.568

]  

and its transpose 

V
T
 =   [

−0.98 0.196 0.0
−0.196 −0.98 0.0
0.065 0.522 0.568

]  

and using the SVD formula we have  
  A=UDV

T
= 

[

−0.2 −0.8 0.4 0.4
0.7 0.3 0.6 −0.4
0.7 −0.6 −0.3 0.4

−0.1 0.0 0.7 0.7

]  [

37.6 0 0 0
0 25.5 0 0
0 0 2.1 0
0 0 0 0.8

] 

  [
−0.98 0.196 0.0
−0.196 −0.98 0.0
0.065 0.522 0.568

]  
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where D = [

37.6 0 0 0
0 25.5 0 0
0 0 2.1 0
0 0 0 0.8

] 

 

VI. QR SOLUTION 

The reflector vector is calculated as v1 = a1- 

sign(a11)ǁa1ǁe1, which is (

−1
1
1
1

). Next, the Householder 

matrix is calculated as H1 = I -  2
V1V1

T

V1
TV1

  =   

[

1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2

]  . H1 is thereafter 

multiplied by A as H1A = [

2 3 2
0 0 0
0 0 4
0 −5 2

].  

Then v2 = (
0
0

−5
) -  (

5
0
0
) =  (

−5
0

−5
), and H2 = I - 2

𝑉2𝑉2
𝑇

𝑉2
𝑇𝑉2

=  

[
0 0 −1
0 1 0

−1 0 0
] 

 
Therefore,  

H2H1A = [

2 3 2
0 5 −2
0 0 4
0 0 0

].  

The R factor is [
2 3 2
0 5 −2
0 0 4

],  

and the  

Q = [

1/2 −1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2
1/2 1/2 1/2 1/2
1/2 −1/2 −1/2 1/2

] 

i.e. Q = H2H1 (as stated earlier).  
 

VII. OBSERVATION OF THE METHODS 

(1) The Singular Value Decomposition method (SVD) 
can be difficult to use on large matrices. For the 
example given above, there were observed 
discrepancies when the SVD was solved manually 
without a mathematical tool. When the matrix 
calculator ran the SVD for the given matrix, these 
values were obtained: 

U= [

−0.3 0.8 −0.2
0.7 −0.1 −0.4
0.6 0.6 0.2

−0.1 0.0 −0.9

],  

D = [
6.0 0.0 0.0
0.0 4.9 0.0
0.0 0.0 1.4

],  

V
T
 =   [

0.1 1.0 −0.3
0.3 0.2 0.9

−1.0 0.2 0.2
] 

This deviation is wide; this can be explained because 
of the large matrix involved and the calculation being 
done by hand. 
(2) The SVD traditional method solves for the 

eigenvalue, 𝜆. This is obtained from the characteristic 
polynomial. Solution becomes cumbersome for large 
matrices. Another issue to note is that, the eigenvalue 
of a matrix cannot be calculated without the matrix 
being in a symmetrical form. The QR decomposition 
isolates the column of the matrix at the beginning of 
computation. An issue to note about eigenvalues is 
that when complexity is involved, any algorithm to be 
used must be iterative, if not stability will not be 
guaranteed. Taking note that stability (numerical) is a 
major issue that any employed method must address; 
if the algorithm cannot achieve this, it defeats the 
purpose of usage.   
An observed characteristic of the QR decomposition is 
this: when the component (i.e. property) of a matrix is 
examined closely, individual attributes or 
characteristics will be highlighted and solution 
becomes easier. The QR works on matrix 
components unlike the SVD, which does not exploit 
the properties of matrix A but only that of A

T
A and AA 

T 
(using the eigenvector approach).  

(3) The Householder reflector, when performed on 
matrix A creates a reflection of vector x. The 
Householder matrices obtained are multiplied together 
to give the matrix Q. Simply put, Q is obtained directly 
from the Householder matrices, and hence, faster 
computation is done. In SVD, when the Householder 
reflection is employed, it transforms A to a bi-diagonal 
form and then into diagonal form using two sequence 
orthogonal matrices. This is an extension of the QR 
factorization. The extension of householder 
transformations to bi-diagonalization is called Golub-
Kahan bi-diagonalization [4]. The Householder 
reflection is applied to the right and left sides of A 

                                  A→ U*n…U*1AV1…Vn-2.  
Reflectors applied to the left introduce column zeros 
beneath the diagonal while those applied to the right 
introduce row zeros. At the end of the algorithm, n 
reflectors have been applied to the left and n-2 
reflectors had been applied to the right [5], leaving A 
to be bi-diagonal. Since Householder transformation 
on two sides can be tricky, therefore the Lanczos 
recurrence is an alternative method for bi-
diagonalization [6]. The Lanczos recurrence is not 
within the scope of this work. 
The next phase is to compute the SVD of the bi-
diagonal matrix. This phase is not an analytic 
algorithm [6]. There are methods available that work 
well for both well-conditioned and ill-conditioned 
matrices but at high computational cost [7]. It should 
also be noted that there are divide and conquer 
algorithms employed in diagonalization that are 
relatively efficient and robust [8]. 
Considering the argument stated earlier, it could be 
observed that the SVD is expensive and 
cumbersome. The computational time employed to 
perform the bi-diagonalization and diagonalization 
counts in usage of the method. Either the Eigen 
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approach or Bi-diagonal approach is employed; the 
use of the SVD must be justified. The QR 
Decomposition works faster and could be enhanced 
for better accuracy than the SVD [9]. 
 

VIII. ENGINEERING APPLICATIONS OF SVD AND 

QR 

Despite the observations made, SVD and QR 
decomposition have found useable application in 
Engineering.  
SVD has found wide application in image 
compression and processing [10]; it has been found to 
be useful in image forensic.  Aside this, [11] has 
adapted SVD to develop a new sub-band 
decomposition and multi-resolution representation of 
digital colour images. 
In Control Engineering, it has been used in the 
examination of dynamic behavior and optimization of 
systems.[12] 
In receiver design of Multiple Input Multiple Output 
(MIMO) systems, SVD has been used to obtain the 
channel capacity estimation and computation of the 
pseudoinverse of the channel matrix [13][14]. 
SVD has been used as a dimension reduction 
technique. SVD forms a computational base for 
Principal Component Analysis [15] and as a 
determinant of low-dimension approximation to highly 
dimensional data. Also, in [16], SVD was used as a 
dimensionality reduction technique for an improved 
term frequency -inverse document frequency (TF-IDF) 
algorithm in feature extraction on Twitter. 
 
In the area of detection, location and characterization 
of damage in structural and mechanical systems, SVD 
has widely been employed as an engineering tool for 
effective and efficient damage control method [17]. In 
[18], it was combined with time domain features and 
fuzzy logic system. SVD was used in the reduction of 
the feature matrix and selection of most stable 
vectors. 
In fault diagnosis of rolling bearings, SVD has been 
adaptively modified for fault feature detection [19]. 
Furthermore, in [20] a fault diagnosis approach was 
developed using Wavelet Packet Transform, Support 
Vector Machine and SVD. In this approach, SVD was 
used to obtain the singular value vectors as feature 
vectors which are classified by the SVM. 
 
In Hardware security, SVD has found usage in the 
detection of ghost circuitry and gate characterization 
[21]. 
 
In reverse engineering, SVD has been applied in gene 
networks. It was used to reduce a large and sparse 
network, by constructing a family of candidate 
solutions [22]. 
In adaptive audio watermarking, singular values in the 
SVD of wavelet domain blocks were applied with 
quantization-index-modulation foe embedding a 
watermark [23]. 

In cutting process, SVD was leveraged as a tool to 
obtain the vector of coefficients of a quadratic sub-
expression embedded in a Group Method of Data 
Handling (GMDH)-type network. The GMDH-type 
neural networks are employed for cutting process of 
plates by shaped charge [24]. 
Higher order Singular Value Decomposition has been 
in real time performance improvement of engineering 
control units for ST engine [25]. 
SVD has further found application in the study of 
account emission data. A method of acoustic signals 
identification based on singular spectral was 
presented in [26] 
Due to the computational expense of SVD, its 
application in robotics has been limited in time past to 
analysis of kinematic and dynamic properties of 
robotic manipulators. Yet, SVD has been recently 
applied to real-time problem solving in robotics [27]. 
The mathematical strength of SVD has also been 
harnessed with Genetic Algorithm in predicting the 
discharge coefficient in a side weir. SVD helps in the 
linear parameter computation of the adaptive neuro-
fuzzy inference system [28]. 
In compressing large datasets of streamflow. SVD 
was found in [29] to be an efficient forecasting tool 
over principal component Analysis.  
 
In the area of Cloud computing, SVD has been used 
to develop an analytic algorithm that helps user 
application to determine the best service provider. 
SVD was used as a ranking and mapping technique in 
cloud computing [30]. 
 
In seismic data analysis, SVD has also found local 
usage. In [31], SVD was used to improve the signal-
to-noise ratio of stacked and unstacked seismic data. 
In Artificial Intelligence, SVD has been used has a 
method for selection, classification, clustering, and 
modeling of DNA microarray data [32]. 
 
As SVD has been singularly explored in most areas of 
engineering science and applications, QR 
decomposition has also found appreciable and 
applicable utilization in Engineering 
QR decomposition has been applied in Principal 
Component Analysis. It was found in [33] that QR 
method was numerically stable and computationally 
efficient than SVD. 
QR decomposition has also be useful in the reduction 
of set of differential and algebraic equations to state 
space form for mechanical system [34] 
In MIMO systems, QR Decomposition is a main MIMO 
technique that is used for decomposing matrices into 
a product of orthonormal matrices and triangular 
matrices. several modular methods have been 
developed for its swift implementation [35][13]. 
In linear discriminant Analysis (LDA), QR 
decomposition has been examined and proposed as a 
fast algorithm for singular scatter matrices [36]. In the 
study of systems, QR decomposition was applied to 
form a new identification method for nonlinear time-
varying multiple- degree-of-freedom (MDOF) dynamic 
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system for location and estimation of nonlinearities 
[37].  

IX. CONCLUSION 

The QR Decomposition works faster and it is a 
method considered to be straightforward to use and 
deal with.  Though having the advantage of being fast, 
what limits the QR decomposition is when the matrix 
under study is close to rank-deficient [38].  Yet, it 
stands that the SVD is a brilliant tool for inconsistent, 
underdetermined linear systems and least square 
problems. 
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