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Abstract—Nowadays, the neural network is 
used in many fields. The neural network or deep 
learning has become synonymous with artificial 
intelligence (AI), and the idea that human 
intellectual work will soon be replaced by AI has 
been born. However, it’s doubtful that deep 
learning is perfect. It seems to have many 
problems. For example, it is known that there are 
many problems such as "inference is a black 
box", "unexpected answer due to overfitting", and 
"large-scale network and long-time learning". 
Bayesian inference can provide learning and 
inference that is completely different from neural 
networks. Therefore, it may be possible to 
overcome the problems of neural networks. In this 
paper, we discuss the application of Bayesian 
inference to parameter estimation of probability 
distribution. 
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I. INTRODUCTION  

Since the advent of deep learning, the neural 
network has brought a big innovation in the world [1, 2, 
3]. However, deep learning might be far from perfect, 
because of “the inference is a black box”, “unexpected 
answer due to the overfitting”, and “large scale of the 
network and long time learning”. The earliest answer to 
them should be given. Among them, the black box 
nature would be a fundamental problem. 

The Bayesian inference is based on a quite 
different theory as the neural network [4, 5, 6]. It might 
be free from a few problems of the neural networks. 
The Bayesian inference has once almost disappeared 
from the world of statistics. The prior probability has a 
densely subjective aspect, and a part of the orthodox 
statisticians rejected it. However, in the decision 
making in the management problems, completely 
objective premises are almost impossible. In those 
cases, the Bayesian inference that can include 
subjectivity could be highly practical. 

In neural network learning, the difference between 
the neuron value of the output layer and the teacher 
data for a certain input is regarded as an error, and the 
weight is adjusted so that the error is minimized. That 
is, we have to solve the multivariable minimum value 
problem. On the other hand, in Bayesian learning 
using Bayesian inference, it means to obtain the 
probability distribution of the output conditional on the 

input from a large number of training data. In Bayesian 
learning, learning is to find the frequency distribution 
from the learning data. However, in the case of 
Bayesian inference, we encounter the problem of the 
maximum value of multiple variables because we look 
for the one that maximizes the probability at the 
judgment stage, but the number of variables is much 
smaller than that of neural networks. In general, it will 
not raise a serious problem.  

We discuss the application of Bayesian inference to 
the estimation of probability distribution parameters. 

Ⅱ. WHAT IS BAYESIAN INFERENCE? 

Let the probability of P(Result | Cause) of Result 
under Cause be given. The reverse probability 
P(Cause | Result) of the cause that brought the result 
is obtained by the Bayesian theorem. The Bayesian 
inference estimates the reverse probability using the 
Bayesian theorem.  

The Bayesian theorem is given by 

( , )
( | )

( )

( | ) ( )

( )

P Result Cause
P Cause Result

P Result

P Result Cause P Cause

P Result





.             (1) 

This is merely a mathematical theorem. P(Cause), 
P(Result | Cause), and P(Cause | Result) are called 
the prior probability, likelihood function, and posterior 
probability, respectively. In the following, we show 
concretely how the Bayesian theorem is used.  

Let 5% of a population be patients Pat of disease, 
and 95% be healthy people Nor. They are called the 
prior probabilities, namely 

( ) 0.05, ( ) 0.95P Pat P Nor  .                  (2) 

The Bayesian inference was rejected for a while 
because of the prior probabilities. They do not cause 
any problem when the prior probabilities are given 
objectively. In some cases such as business, political 
and social problems, we are frequently obliged to give 
them subjectively. However, this property of the 
Bayesian inference has now become the 
characteristics of the Bayesian inference.  

According to a test, 98% of the patients are 
positive (Ptv) and 2% of those negative (Ntv). On the 
other hand, 4% and 96% of the healthy people are 
positive and negative, respectively. Namely 

( | ) 0.98, ( | ) 0.02,

( | ) 0.04, ( | ) 0.96.

P Ptv Pat P Ntv Pat

P Ptv Nor P Ntv Nor

 

 
          (3) 
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We assume that a person who is not identified as 
patient or non-patient is positive to the test. The 
probability that a person is a patient is estimated as 
follows using the Bayesian theorem. In the Bayesian 
inference, the learning is nothing but to obtain the 
probabilities.  

Since we have 

( , ) ( | ) ( ) 0.98 0.05 0.049

( , ) ( | ) ( ) 0.04 0.95 0.038

P Ptv Pat P Ptv Pat P Pat

P Ptv Nor P Ptv Nor P Nor

   

   
(4) 

from (2) and (3), we obtain 

( , ) 0.049
( | ) 0.563,

( , ) ( , ) 0.087

( , ) 0.038
( | ) 0.437.

( , ) ( , ) 0.087

P Ptv Pat
P Pat Ptv

P Ptv Pat P Ptv Nor

P Ptv Nor
P Nor Ptv

P Ptv Pat P Ptv Nor

  


  


 

(5) 
Hence, the probability that the person is a patient is 
56.3% and a non-patient 46.7%. 

Since we have similarly, if the test result is 
negative 

( , ) ( | ) ( ) 0.02 0.05 0.001

( , ) ( | ) ( ) 0.96 0.95 0.912,

P Ntv Pat P Ntv Pat P Pat

P Ntv Nor P Ntv Nor P Nor

   

   
 

(6) 
we obtain 

( , ) 0.001
( | ) 0.001

( , ) ( , ) 0.913

( , ) 0.912
( | ) 0.999.

( , ) ( , ) 0.913

P Ntv Pat
P Pat Ntv

P Ntv Pat P Ntv Nor

P Ntv Nor
P Nor Ntv

P Ntv Pat P Ntv Nor

  


  


 

 (7) 

The probability that the person is a patient is 0.1% and 
a non-patient 99.9%. 

We call 𝑃(𝑁𝑜𝑟|𝑃𝑜𝑠) = 0.437  and 𝑃(𝑃𝑎𝑡|𝑁𝑡𝑣) =
0.001 as false positive and false negative, respectively. 
There is a case where false positives and false 
negatives can’t be non-negligible.  

Rewriting (5), we have 

( , )
( | )

( , ) ( , )

( | ) ( )

( | ) ( ) ( | ) ( )

( , )
( | )

( , ) ( , )

( | ) ( )
.

( | ) ( ) ( | ) ( )

P Ptv Pat
P Pat Ptv

P Ptv Pat P Ptv Nor

P Ptv Pat P Pat

P Ptv Pat P Pat P Ptv Nor P Nor

P Ptv Nor
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P Ptv Pat P Ptv Nor

P Ptv Nor P Nor

P Ptv Pat P Pat P Ptv Nor P Nor













      (8) 

Hence, if the prior probabilities are equal, namely 

( ) ( )P Pat P Nor ,                            (9) 

we obtain 

( | ) ( | )
( | )

( | ) ( | ) ( )

( | ) ( | )
( | ) .

( | ) ( | ) ( )

P Ptv Pat P Ptv Pat
P Pat Ptv

P Ptv Pat P Ptv Nor P Ptv

P Ptv Nor P Ptv Nor
P Nor Ptv

P Ptv Pat P Ptv Nor P Ptv

 


 


 

 (10) 
Equation (10) is nothing but the likelihood estimation. 

 

Ⅲ. ESTIMASTION OF PARAMETERS OF PROBABILITY 
DISTRIBTION 

A.   Bernoulli distribution 
 
Let x=1 and x=0 refer to the face and back in coin 

throw, respectively. The probability P(x) is called 
Bernoulli distribution and given by 

1( | ) (1 )x xP x      .                     (11) 

The parameter μ is the probability of x=1. We infer the 
parameter μ when a sequence of random numbers 
x=x1, x2, …, xN consisting of 1 and 0 is given.  

According to the Bayesian theorem, the reverse 
probability P(μ | x) is given by 

( , ) ( | ) ( )
( | )

( ) ( )

P P P
P

P P

  
  

x x
x

x x
.             (12) 

When the number of the candidates of the parameter 
μ is I, that is, they are μ1, μ2, …, μI, the probability of 
μ=μi can be obtained by 

1 1

( | ) ( ) ( | ) ( )
( | )

( , ) ( | ) ( )

i i i i

i I I

j j j

j j

P P P P
P

P P P

   


  
 

 

 

x x
x

x x

.    (13) 

If we assume 

1 2( ) ( ) ( )IP P P     ,                           (14) 

(13) becomes 

1

( | )
( | )

( | )

i

i I

j

j

P
P

P











x
x

x

.                            (15) 

This is nothing but the likelihood method. The 
appropriateness is discussed later.  

The likelihood function P(x | μi) could be calculated by 

1

( | ) ( | )
N

i n i

n

P P x 


x .                            (16) 

The μi that makes P(μi|x) given by (15) the maximum 
becomes the estimation of the parameter μ. This is 
nothing but the estimation by the maximum likelihood 
method.  

A numerical example of the above-mentioned 
estimation method is shown below. Let x=x1, x2, …, xN 
be a random sequence of 0 and 1 with N=100 
generated by Bernoulli distribution given by (11) with 
μ=0.35. The random sequence is shown in Fig. 1.  

 

Fig. 1 A random sequence that follows Bernoulli distribution.  

The calculation result is shown in Fig. 2, where the 
candidates of μ are given by 

. , 0,1, ,10
10

i

i
i                                  (17) 
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Fig. 2 The reverse probability (The candidates of μ are coarsely 

set). 

If we use the finer setting for the candidates as 

, 0,1, ,20
20

i

i
i   ,                               (18) 

we have a result as shown in Fig. 3. Sinceμ=0.35 
gives the maximum value, this value could be the 
estimation.  

 

Fig. 3 The reverse probability (The candidates of μ are finely 

set). 

For reference, the results of N=50 and N=200 are 
shown in Fig. 4 (a) and Fig. 4 (b), respectively. In the 
case of N=50, the estimation of μ=0.4 is wrong. In the 
case of N=200, the result is correct and the peak 
becomes sharper.  

 
(a) N=50 

  
(b) N=200 

Fig. 4 Effects of the length of the random sequence N on the 
reverse probability.  

If the prior probabilities are equal, the Bayes 
inference is equal to the maximum likelihood method. 
If the prior probabilities are not equal, a result different 
from that of the maximum likelihood method might be 

obtained. However, in the present case, if we increase 
the number of data N, the result does not depend on 
the choice of the prior probabilities. We show this 
property using numerical examples below.  

If the prior probability is proportional to a normal 
distribution with the average μ=0.5 and the standard 
deviation σ=0.25: 

2

22

( )1
( ) exp

22

i

iP
 




 
  

 
,               (19) 

the parameter μi estimated using (13) converges to 
0.35 as N increases.  

TABLE 1 The Bayesian estimates of μi with the unequal choices of 
the prior probabilities. 

Number of 
Data N 

Estimated 
μi 

Max of 
P(μi ) 

25 0.4 0.21 

50 0.4 0.292 

100 0.35 0.415 

200 0.35 0.543 

400 0.35 0.684 

 
If we assume that the prior probabilities are 

proportional to a normal distribution with the average 
μ=0.75 and the standard deviation σ=0.125, we also 
obtain the same result. This means that the prior 
probabilities do not affect the estimate as far as we 
use as big N as sufficient. This property originates 
from the fact that the data are generated from a single 
source. If the data are generated from several 
sources, the prior probabilities possibly affect the 
posterior probabilities. 

B.   Normal distribution 

 We assume two parameters of a normal 
distribution are the mean μ=0 and standard deviation 
σ=1. Let the candidate of μ and σ be discretized as 

3.0 0.25 , 0,1, , 24

0.125 0.125 , 0,1, , 24

i

j

i i

j j





   

  
.           (20) 

Equation (13) in case of Bernoulli distribution is 
replaced by 

1 1

1 1

( | , ) ( ) ( )
( , | )

( , , )

( | , ) ( ) ( )

( | , ) ( ) ( )

i j i j

i j I J

i j

i j

i j i j

I J

i j i j

i j

P P P
P

P

P P P

P P P

   
 

 

   

   

 

 









x
x

x

x

x

.           (21) 

With respect to the prior probabilities, if we 
assume 

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

I

I

P P P

P P P

  

  

  

  
,                    (22) 

(21) becomes 

1 1

( | , )
( , | )

( | , )

i j

i j I J

i j

i j

P
P

P

 
 

 
 





x
x

x

.                (23) 
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This is nothing but the likelihood method.  

The likelihood function P(x|μi,σj) could be 
calculated by 

1

( | , ) ( | , )
N

i j n i j

n

P P x   


x .                 (24) 

Parameters μi and σj making the posterior probability 
maximum become the estimates of the parameters μ 
and σ.  

Numerical examples applying the above-
mentioned estimation method are given below. A 
random number sequence x=x1, x2, …, xN of the 
length N=50 is generated from a normal distribution 

with the parameters of μ=0、σ=1: 
2

22

1 ( )
( | , ) exp

22

x
P x


 



 
  

 
.            (25) 

Fig. 5 shows the random sequence and a 
comparison of the approximate and true probability 
distributions.  

The values of the probability calculated by (23) are 
shown in Table 2. Since the probability takes the 

 

maximum at μ=0 and σ=1, we consider the values as 
the estimates. The results are correct. 

 
(a) Random sequence 

 
(b) Probability distribution 

Fig. 5 A random sequence and probability distribution from normal 
distribution. 

TABLE 2 Calculation results of the reverse probability. 

 σ=0.875 σ=1 σ=1.125 σ=1.25 σ=1.375 σ=1.5 σ=1.625 σ=1.75 

μ＝-0.75 0 0.000003 0.000022 0.000035 0.000021 0.000007 0.000002 0 

μ＝-0.5 0.000156 0.002803 0.005469 0.00307 0.000841 0.000152 0.000022 0.000003 

μ＝-0.25 0.023711 0.131224 0.114232 0.035999 0.006432 0.00084 0.000093 0.00001 

μ＝0 0.06083 0.269952 0.201982 0.057119 0.00942 0.001157 0.000122 0.000012 

μ＝0.25 0.002634 0.0244 0.030235 0.012266 0.002642 0.000398 0.000049 0.000006 

μ＝0.5 0.000002 0.000097 0.000383 0.000356 0.000142 0.000034 0.000006 0.000001 

μ＝0.75 0 0 0 0.000001 0.000001 0.000001 0 0 

 

C. Gamma distribution 

Gamma distribution has also two positive 
parameters, that is, the shape parameter κ=1 and 
scale parameter θ =1.5 : 

11
( | , ) exp for x>0

( )

xP x x 


 

 

 


.       (26) 

Let the candidates of the parameters be, for example 

0.125 0.125 , 0,1, , 24

0.125 0.125 , 0,1, , 24

i

j

i i

j j





  

  
.           (27) 

If we make similar assumptions, (23) for normal 
distribution becomes 

1 1

( | , )
( , | )

( | , )

i j

i j I J

i j

i j

P
P

P

 
 

 
 





x
x

x

.                (28) 

The likelihood function P(x|κi,θj ) can be calculated 
by 

1

( | , ) ( | , )
N

i j n i j

n

P P x   


x .                           (29) 

Parameters κi and θj making (28) maximum become 
the estimates of the parameter κ and θ. This is nothing 
but the maximum likelihood method. 
 

A numerical example of the above-mentioned 
estimation method is shown below. Suppose that a 
random sequence x=x1, x2, …, xN be generated by 
gamma distribution given by (26) with κ=1, θ=1.5 and 
N=200. Fig. 6 shows the random sequence and a 
comparison of the approximate and true probability 
distributions. 

 
(a) Random sequence 
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(b) Probability distribution 

Fig. 6 A random sequence and probability distribution from gamma 
distribution. 

The values of the probability calculated by (28) 
are shown in Table 3. Since the probability takes the 
maximum at κ=1 andθ=1.5, we consider the values as 
the estimates. The results are correct. 
 
 
 
 
 

 

TABLE 3 Calculation results of the reverse probability. 
 θ＝1.25 θ＝1.375 θ＝1.5 θ＝1.625 θ＝1.75 θ＝1.875 θ＝2.0 θ＝2.125 

κ=0.75 0 0 0 0.000018 0.000196 0.000749 0.001292 0.001205 

κ=0.875 0.000001 0.000267 0.007728 0.04341 0.072789 0.049475 0.017012 0.003484 

κ=1 0.002883 0.074423 0.245057 0.186109 0.048935 0.005927 0.000406 0.000018 

κ=1.125 0.04973 0.118464 0.044303 0.004549 0.000188 0.000004 0 0 

κ=1.25 0.011016 0.002422 0.000103 0.000001 0 0 0 0 

κ=1.375 0.000057 0.000001 0 0 0 0 0 0 

κ=1.5 0 0 0 0 0 0 0 0 

 

D. How to treat when the calculated values 
become too small because of the product of 
too many probabilities 

We must calculate many products of the 
probabilities in the Bayesian estimation. Since the 
probability is less than or equal to 1, the products of 
many probabilities make underflows. The denominator 
of the reverse probability does not affect the order of 
the size of the reverse probabilities. Hence, if we 
compare the logarithm of the likelihood function given 
by (16), (24) and (29), the maximum of the reverse 
function can be determined. We can prevent the 
underflow by taking the logarithm of the probabilities. 
at μ=0 and σ=1, we consider the values as the 
estimates. The results are correct. 

 
As an example, we consider the problem of 

determining the parameters of normal distribution 
discussed in section 3.B. We consider the logarithm of  

 

the likelihood function given by (24): 

1

log ( | , ) log ( | , )
N

i j n i j

n

P P x   


x .          (30) 

In the following calculation, a function f given by (31):  

 

  

1

,

,1

( | , )
( | , ) exp log

( | , )max

exp log ( | , ) log ( | , )max

N
n i j

i j
n

n i j
i j

N

n i j n i j
i jn

P x
f

P x

P x P x

 
 

 

   


  

 

 

  
  

   
    

 
  

 

x

   

                (31) 
is used instead of (30). The calculation results for the 
same numerical example as in section 3.B are shown 
in Table 1. Since μ=0 and σ=1 make f maximum, 
these values is considered the estimate of the 
parameter μ and σ.   
 

TABLE 4 Results f given by  (31). 

 σ=0.75 σ=0.875 σ=1 σ=1.125 σ=1.25 σ=1.375 σ=1.5 

μ=-1 0 0 0 0 0 0 0 

μ=-0.75 0 0 0.00001 0.000082 0.000131 0.000078 0.000025 

μ=-0.5 0.000001 0.000578 0.010382 0.02026 0.011374 0.003116 0.000563 

μ=-0.25 0.000477 0.087833 0.486102 0.423157 0.133353 0.023828 0.003111 

μ=0 0.00172 0.225336 1 0.748213 0.21159 0.034896 0.004287 

μ=0.25 0.000024 0.009758 0.090386 0.112 0.045436 0.009787 0.001473 

μ=0.5 0 0.000007 0.000359 0.001419 0.00132 0.000526 0.000126 

μ=0.75 0 0 0 0.000002 0.000005 0.000005 0.000003 

 

E. Compound distribution  

For the solution to the problem in the present section, 
we need a large number of data. We face difficulties in 
the numerical calculations since the underflows 
discussed in section 3.D occur and the calculations 

can’t be continued. When the data number N is smaller 
than or equal to 200, we calculate the likelihood 
function using the conventional method. However, 
when N is bigger than 200, we take the logarithm of 
the likelihood function as discussed in the previous 
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section, since the large or small relationship does not 
change, if we take logarithm.  

We consider a compound distribution consisting of 
several probability distributions. As an example, we 
consider a compound distribution of two normal 
distributions. Let the parameters of the two 
distributions be (μ1,σ1) and (μ2,σ2), and the mixing 
ratio be a : 

2

1

1 1 2 2 22
11

2

2

22
22

( )1
( | , , , , ) exp

22

( )1
(1 ) exp

22

x
P x a a

x
a


   







 
  

 

 
   

 

.   (32) 

As the candidates of the parameters, we consider 

1 1

6 3
3 , 0.125 , 0,1, ,i ii i i P

P P
       ;  (33a) 

2 2

6 3
3 , 0.125 , 0,1, ,i ii i i P

P P
       ;  (33a) 

1
, 0,1, ,ia i i P

P
   .                 (33a) 

If we assume that the prior probabilities are all equal, 
we then have an expression of the reverse probability 
similar to (23) in the case of a single normal 
distribution: 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 1 1 1

( , , , , | )

( | , , , , )

( | , , , , )

i j k l m

i j k l m

I J K L M

i j k l m

i j k l m

P a

P a

P a

   

   

   
    





x

x

x

.      (34) 

The likelihood function 
1 1 2 2( | , , , , )i j k l mP a   x  is 

given by 

1 1 2 2 1 1 2 2

1

( | , , , , ) ( | , , , , )
N

i j k l m n i j k l m

n

P a P x a       


x .  (35) 

The parameter 
1 1 2 2, , , ,i j k l ma     that makes (34) 

maximum becomes the estimate. This is nothing but 
the maximum likelihood estimation. 

First, we show a numerical result with N=200 
below. We set the parameters 

1 1 2 21.2, 1.025, 2.4, 0.875         and 0.3a  . A 

random sequence x=x1, x2, …, xN is generated from 
the compound distribution. In Fig. 7(a) , the random 
sequence is shown. In Fig. 7(b), the true and 
approximate probability distribution is shown. The 
approximate probability distribution means the 

distribution calculated from the random sequence. 
The maximums of the reverse probability occurred at  

1 1 2 21.2, 1.025, 2.4, 0.875, 0.35a          

and 

1 1 2 22.4, 0.875, 1.2, 1.025, 0.65a         . 

The parameters of each probability distribution are 
estimated correctly, but the estimate of the mixing 
ratio is not accurate. The correct estimation of the 
mixing ratio seems difficult. 

 
(a) Random seuence 

 
(b) Probability distribution 

Fig. 7 A random sequence and the probability distribution. 

We must conduct the numerical calculations with N

＞200 in order to estimate the mixing ratio a correctly. 

For this purpose, we apply the method of using a 
logarithm of the likelihood function instead of the 
likelihood function itself as discussed in section 3.D. If 
we take the logarithm of (35), we have   

1 1 2 2

1 1 2 2

1

log ( | , , , , )

log ( | , , , , )

i j k l m

N

n i j k l m

n

P a

P x a

   

   




x

.            (36) 

Table 5 gives the results. When N=800, the correct 
result is given. A probability distribution obtained 
approximately from the frequency distribution with 
N=800 and the true probability distribution are given in 
Fig 8. 

TABLE 5 Estimation results using (36). 

N μ１ σ1 μ2 σ2 a 
logP(x|…) 

Biggest 2nd Biggest 

200 -1.2 1.025 2.4 0.875 0.35 -385.932 -386.873 

300 -1.2 1.025 2.4 0.875 0.35 -581.68 -583.072 

400 -1.2 1.025 2.4 0.875 0.35 -774.149 -775.885 

500 -1.2 1.025 2.4 0.875 0.35 -965.733 -967.112 

600 -1.2 1.025 2.4 0.875 0.35 -1154.51 -1156.63 

700 -1.2 1.025 2.4 0.875 0.35 -1329.84 -1330.53 

800 -1.2 1.025 2.4 0.875 0.3 -1515.98 -1518.77 
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Fig. 8 Probability distribution (N=800). 

F. Search of probability maximum using the 
mountain-climbing method 

In the above discussion, we obtained the 
estimation by choosing the parameters making the 
reverse probability maximum among the candidates of 
the parameters set beforehand. However, we can 
obtain the maximum without setting the candidates 
beforehand.  

In the following, we consider the same problem as 
discussed in section 3.E. However, for simplicity, we 
assume the parameters of the two probability 
distributions are given as 

1 1 2 21.2, 1.025, 2.8, 1.025        , 

but the mixing ratio a alone is unknown. 

Furthermore, we use (36) instead of (35). If we 
differentiate (36), we have 

1 1 2 2

1 1 2 2

1

1 1 2 2
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











x

           (37) 

The calculation results are shown in Fig. 9. When 
the number of data N is increased, the mixing ratio a 
approaches the correct value 0.3. 
 

 

Fig. 9 The calculation result of the mixing ratio a using the mountain-
climbing method.  

In the above discussion, analytical differentiation is 
used. However, even if we use a numerical 
differentiation, we could obtain the same result. The 
numerical differentiation makes the calculation much 
easier.  

Ⅳ CONCLUSIONS  

A big innovation has been brought to the world by 
deep learning. However, deep learning might be far 
from perfect, because of “the inference is a black box”, 
“unexpected answer due to the overfitting”, and “large 
scale of the network and long time learning”. The 
earliest answer to them should be given. Among them, 
the black box nature would be a fundamental problem.  

The Bayesian inference is based on a quite 
different theory as the neural network. The learning is 
quite different. The learning in the Bayesian estimation 
is nothing but obtaining the probability distribution of 
the result due to the cause. And the inference is to 
obtain the probability of cause due to the result using 
the Bayesian theorem. The Bayesian inference might 
be free from a few problems of the neural networks.  

In the present study, we apply the Bayesian 
inference to the parameter-estimation of the several 
probability distributions such as Bernoulli distribution, 
normal distribution, and gamma distribution. 
Furthermore, we applied the method to a compound 
probability distribution consisting of two normal 
distributions. According to the numerical calculations, 
satisfactory results are obtained.  

If the prior probabilities are taken equal, the 
Bayesian inference becomes identical to the maximum 
likelihood method. If the data is generated from a 
single source as in the present case, the estimated 
values converge to the same values as shown in the 
present numerical results, as the number of the data 
increases. However, if the data are generated from 
several sources, the posterior probabilities change as 
the prior probabilities change.  
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