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Abstract— The ‘captured’ 2-body Kepler 

problem considering relativity is solved by using 
an iterative integral equation. The rationale for 
this approach is to increase the accuracy of the 
limits for a satellite’s motion and potentially 
provide a test to evaluate different gravitational 
laws. Moreover, this effort might provide 
additional insights to resolve other anomalies 
such as the flyby anomaly, the Faint Young Sun 
paradox, the Pioneer anomaly and other 
inconsistencies that potentially may be used to 
validate Einstein’s Theory of Relativity. The 
mathematical solution solves a nonlinear Volterra 
integral equation using an iterative fashion, 
which reveals a correction factor for treating a 
given closed orbit. However. This correction 
factor is not a constant value but rather a 
function of the elliptical or circular orbit angular 
displacement. This function may be insignificant 
during portions of the trajectory, say at apogees 
or perigees. Nonetheless, these results are 
encouraging where relativity effects may or may 
not exist to understand and resolve several of the 
other variances or gravitational anomalies 
currently related to our solar system. 

I. INTRODUCTION 

There is a need to develop a testing function to 
examine gravitational anomalies. The question of 
interest for one situation will examine: if relativity has 
a major impact on a spacecraft’s orbit? This 
trajectory involves a nonlinear Volterra integral 
equation. In the future, these insights with these 
other compared. Iorio, for example, provides an 
excellent examination of these anomalies that are 
worth examining. Moreover, relativity effects may 
somehow also influence some of these anomalies as 
well. 

To paraphrase Iorio and include some of these 
views, there are currently accepted laws of 
gravitation applied to known bodies which may have 
the potential of paving the way for remarkable 
advances in fundamental physics. This is particularly 
important now more than ever, given that most of the 
Universe seem to be made of unknown substances 
labeled Dark Matter and Dark Energy or, by contrast, 
one may solve these issues by using a different 
gravitational law other than Newtonian gravitation.  
Moreover, investigations in one of such directions 
can seek destiny to enrich and find other solutions as 

well. The current status of some of these alleged 
gravitational anomalies in the Solar system are:  
a)  Possible anomalous advances of planetary 

perihelia, 
b) Unexplained orbital residuals of a recently 

discovered moon of Uranus (Mab),  
c)  The lingering unexplained secular increase of the 

eccentricity of the orbit of the Moon, 
d)  The so-called Faint Young Sun Paradox,  
e)  The secular decrease of the mass parameter of 

the Sun, 
f)    The Flyby Anomaly,  
g)   The Pioneer Anomaly, and  
h) The anomalous secular increase of the 

astronomical unit. 
 

One more anomaly should also be added to 
include the Trojan asteroids placed in Libration 
anomalies, say from Iorio [1], should be points from 
the Sun-Jupiter system discussed by the author in [2] 
which may offer an opportunity for demonstrating 
gravitational waves as well as gravitational repulsion.  

 
Basically, anomalies [1] may show up in 

experiments to make comparisons with the 
conventional wisdom. In science, the word ‘anomaly’ 
designates some sort of discrepancies with respect 
to an expected path observed in systematic errors in 
the observations. Once determined that the anomaly 
is real, honest engineers and scientists need to 
determine given phenomenon. In astronomical 
contexts, it was used since ancient times to indicate 
irregularities in motions of celestial objects.  First of 
all, it must be carefully ascertained if the anomaly 
really exists; it may be either a mere artifact of the 
data reduction procedure, or the consequence of 
malfunctioning of the measuring devices and how to 
change the conventional wisdom for explaining the 
anomaly as well as still accept and preserve the 
existing body of knowledge. Let us address some of 
these anomalies [1] with the objective that there may 
be a serious need to change the kinematic motions to 
explain some of these events. 

 
Anomalous Secular Increase of the Eccentricity 

of the Moon’s Orbit demonstrated steady progress 
in reviewing data from the Lunar Laser Ranging 
(LLR) technique. In the last decades, data has 
determined the orbital changes at a cm level of 
accuracy or better which allows for accurate testing 
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of the General Theory of Relativity. Moreover, a 
major limiting factor in our knowledge of the celestial 
course of the Moon is currently based by a 
description of the complex geophysical processes. 
The lingering unexplained increase of the eccentricity 
of the Moon's orbit is yet to be understood, despite 
recent efforts to improve the geophysical models of 
the intricate tidal phenomena taking place in the 
interior of our planet and its natural satellite. 

 
The eccentricity rate e  can vary from a high of 

1.6 ± 0.5 × 10
−11

 yr
−1

 to a low of 9 ± 3 × 10
−12

 yr
−1

. 
The general relativistic Lense-Thirring acceleration 
induced by the Earth’s gravitomagnetic field acting on 
the Moon has the correct order of magnitude, but it 
does not affect e. A still undetected distant planet in 
the Solar system does, in principle, make e 
cumulatively change over time, but the required mass 
and distance for it are yet to be determined. 

 
Anomalous perihelion precession of Mercury 

of 42.98 "cy
−1

 (a change of its orbit by 42.98 arc 
seconds in a century) since it is nowadays fully 
included in the state-of-the-art models of all of the 
modern ephemerides. Instead, if real, it would be due 
to some unmodeled dynamical effects [3]-[4] which, 
in principle, could potentially signal a breakthrough 
with the currently accepted laws of gravitation. The 
relativistic dynamical models for the modern 
ephemerides, for example, Mercury, are not 
complete that do not include the 1PN 
gravitomagnetic field of the Sun, not to say of the 
other major bodies of the Solar system, which causes 
the Lense-Thirring effect [5]. This effect would be 
comparable to the action of a hypothetical ring of 
undetected moonlets in its neighborhood as a 
possible solution using conventional gravitational 
physics regarding the gravitational anomalies for 
Uranus.  

 
The Faint Young Sun Paradox: According to 

established evolutionary models [6]-[8] of the Sun's 
history, the energy output of our star during the 
Archean, from 3.8 to 2.5 Gyr ago, would have been 
insufficient to maintain liquid water on the Earth's 
surface. Instead, there are strong but compelling 
independent evidence where our planet was mainly 
covered by liquid water oceans, hosting also forms of 
life, during that remote era. As such, our planet could 
not be entirely frozen during such an era, where it 
would have necessarily been if it received only about 
75% of the current solar irradiance. One view implies 
a steady precession of the Earth's orbit during the 
entire Archean eon provided a closer location to its 
present day heliocentric distance in such a way when 
the Sun’s luminosity was adequate. Thus the effects 
of the ocean may be a potential gravitational 
anomaly. 

 
As ‘Flyby Anomaly’ [9]-[13] is intended to treat 

the collection of unexplained increases for v∞ in the 
asymptotic line-of-sight velocity in the direction of v∞. 

This has been of the order of ≈ 1 − 10 mm s
−1

 with 
uncertainties to as little as ≈ 0.05 − 0.1 mm s

−1
, which 

have been experienced by the interplanetary 
spacecraft Galileo, NEAR, Cassini, Rosetta and, 
perhaps, Juno during their Earth flybys. The flyby 
anomalies have not yet been detected when such 
spacecraft flew by other planets. This perhaps may 
be due to their still relatively inaccurate gravity field 
models compared to the Earth’s gravitational model. 

 
Pioneer Anomaly: At the end of the twentieth 

century, it was reported that radio tracking data from 
the Pioneer 10 and 11 spacecraft [14]-[16] exhibited 
a small anomalous blue-shifted frequency drift 
uniformly changed the rate of 5.99 ± 0.01 × 10

−9
 Hz 

s
−1

 interpreted as a constant and uniform 
deceleration approximately directed towards the Sun. 
This was at heliocentric distances approximately of 
20 − 70 au. Each satellite moved in opposite direction 
from the sun to determine if other effects such as the 
solar wind would exist.  

 
Subsequent years witnessed some options to 

explain a variety of conventional and exotic physical 
mechanisms for both gravitational and non-
gravitational nature for these differences. These 
gravitational effects started when the instrumentation 
was stopped and the electrical power from a nuclear 
isotope power supply was altered in a different 
electrical circuit involving a heater to dissipate 
electrical energy. In 2012, an appropriate model of 
the recoil force assumed that an anisotropic emission 
of thermal radiation off the spacecraft was able to 
accommodate for about 80% of the unexplained 
acceleration plaguing the telemetry of both the 
Pioneer probes as far as magnitude, temporal 
behavior, and direction of concern. The remaining 
20% still does not represent a statistically significant 
anomaly in view of uncertainties in the acceleration 
estimates using Doppler telemetry and thermal 
models. On the other hand, the Pioneer anomaly 
may be due to some exotic gravitational mechanism 
external to the spacecraft. This resulted in the form of 
a constant value and uniform acceleration directed 
towards the Sun. These views were performed with 
systematic investigations about its presumed effects 
on bodies other than the Pioneer probes performed 
since 2006. 

 
It turned out the Pioneer anomaly may also 

involve induced anomalous signatures of Uranus, 
Neptune, and Pluto. This would be far too large to 
consider the initial conditions or strong tensions 
between the Galactic tide dominant in making Oort 
cloud comets observable. The action may be a 
putative Pioneer anomaly-like acceleration in those 
remote peripheries of the Solar system. 

 
Thus, these anomalies [1] regarding the standard 

behavior of natural and artificial systems within the 
Sun’s realm as expected may consider where the 
conventional physics possesses a great potential to 
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uncover modifications of our currently accepted 
picture of natural laws. Nonetheless, before this 
dream really comes true, it is mandatory that the 
unexpected patterns are confirmed to an adequate 
level of statistical significance by independent 
analyses, and any possible conventional viable 
mechanism could be responsible can be reliably 
excluded. 

 

With these thoughts regarding anomalies, the 

equations of motion for the two-body celestial 

mechanics problem, although well-established, is 

altered. Additionally, several references [17]-[18] 

have provided supplementary factors to include 

changes in the trajectories with the Theory of 

Relativity. One wonders about the magnitude and the 

impact to these trajectories if for a probe of interest, 

moving at conditions for an elliptical orbit, which 

would exert some changes due to relativity. 

Moreover, the concern should also focus on 

trajectory changes if the probe is moving at or near 

the speed of light. However, we cannot deal with this 

latter problem at this time. Under these 

circumstances, light speed trajectories may alter 

gravitational forces themselves as well as treating 

only with relativity. 

 

II. DISCUSSION 

 

Jefimenko [17]-[18] looked at producing a 

gravitational law that allows for a probe moving at the 

speed of light considering relativity specifically due to 

gravity. As expected, the model result at slower 

speeds is asymptotic with Newtonian gravity typical 

to a probe in orbit around the Earth or moving in the 

near-abroad within our solar system. What may be of 

concern is the inherent trajectory may still have some 

sensitivity to relativity while the gravitational law may 

be a bother based upon affects near the speed of 

light. Thus this evaluation may provide some insights 

toward using a testing ground to evaluate different 

gravitational laws comparable to Newtonian 

gravitation. 

 

In previous studies by the author [19], a Green’s 

function solution was treated for the trajectories in a 

binary pulsar. The interesting factor within the 

discipline of astrophysics, states these systems are 

usually identified with a single eccentricity value for 

both celestial bodies. These results [19] indicate for 

most of these binary systems, the trajectories may 

not be duplicates of each other for a neutron star and 

its companion. There are some situations, which 

could result where one body is in a nearly circular 

orbit while the other companion or neutron star is 

clearly in an elliptical orbit. Such situations for these 

orbital trajectories demand separate eccentricities as 

demonstrated by Figure 1. 

 

Results of this assessment suggest the different 

eccentricities for binary pulsars with a neutron star 

and a companion should be: 
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 These eccentricity differences (e1 and e2) are a 
function of several parameters such as the angular 
momentum per unit mass (h), initial orbital 
parameters (θo) as well as weight or gravitation. 
 

 
 

FIGURE 1. The trajectories for the pulsar J1903+0327 with 

its possible sun-like companion star 

compared with the orbit of the Earth around the sun. 

 
III. ANALYSIS 

 Before looking at specific orbits and orientations, 
several notions are required. This will be discussed 
for a basic understanding shown with typical orbit 
definition, a Green’s function, the impact of relativity 
to the trajectory, and finally a solution to the integral 
equation for relativity trajectory. 

A. Standard Terminology 
 

 The basic problem of the ‘captured’ two-body 

model is where one body is relatively light in terms of 

mass while the other body has a significant mass. 

Motion is in the same plane simplify the mathematics 

of the problem. With this premise [20]-[21], the body 

with the larger mass is assumed to be immovable 

compared to the first body. The issue is to determine 

the initial momentum conditions and energy 

conservation problem essentially based on the 

premise where the lighter body performs the 

dynamics of interest while the larger body is 

assumed stationary. There are a distance and an 

angular orientation to completely specify the 

coordinate location related to the reference 

coordinate origin. The distance between the two 

bodies is from a center of the reference coordinate 

system includes a focal point on the smaller mass’ 

orbit. The center of this reference coordinate system 

is assumed to also be some negligible distance from 
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the center of the larger body. In reality, there is some 

small distance treated as inconsequential between 

the actual weight locations for the barycenter.  

 

 The radial and angular momentum equation for 

the smaller body is defined as: 
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 Distance from the Barycenter (center of mass for 

these bodies) is measured to the spacecraft with r. 

Carat symbols represent the unit direction normal to 

the trajectory with r and tangentially with θ. Time is 

measured with t. The subscripts in the LHS are not 

derivatives but the radial and azimuthal force 

directions respectively in the coordinate system. 

Derivatives are functions of time. The radial force 

includes the gravitational attraction between the two 

bodies. Moreover, the second equation assumes 

where the azimuthal force vanishes for each of these 

bodies.  

 

 In this problem, the radial dimension is changed 

as the difference between the distances to the two 

objects. The problem can be reduced to one 

dimension with some definitions where µ is the total 

mass of both bodies (G (m1+m2)), G is the universal 

gravitational constant, and m is mass. This is 

considered as the gravitational attraction for this 

problem as follows: 

 

.,.02

,

22

2

2

2

2

2

2





















































dt

d
rh

dt

d
r

dt

d

r

m

dt

d

dt

rd

dt

d
rm

rdt

d
r

dt

rd




 

      (2) 

 

Clearly, the azimuthal gravitation disappears with a 

constant, h, that is the angular momentum per unit 

mass to satisfy the azimuthal acceleration. Thus the 

second equation vanishes. A variable u is selected 

based upon an inverse function of the radius to 

simplify the problem and removing the time 

derivatives to account for azimuthal derivatives with 

substitutions from the problem. This results in:
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 When these are substituted into the above 

equation for the radial momentum, the results are: 
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or with some simplifications: 
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This is a key equation for this problem. The solution 

of this ordinary differential equation considering a 

geometric length l and eccentricity e is: 
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 The importance of this equation is that the 

eccentricity e plays a significant role. Basically, the 

smaller body rotates about the larger body with a 

circular orbit (if e is zero) or if the eccentricity is 

positive and less than 1.0, the orbit is an elliptical 

orbit with the major body located at one of the focal 

points in the elliptical orbit. If the eccentricity is 

greater than 1.0, the orbit is hyperbolic and it leaves 

or escapes the gravitational pull of the larger body. 

Obviously, this result depends upon initial velocity 

conditions and kinetic energy before the interaction. 

 

 A solution to this integral equation using a 

Green’s function solution [22] accounting for 

boundary conditions is:  
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  These terms are the solution for the above 

equation where the Green’s function will become the 

kernel of the integral equation which is defined as:  
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This is the basic solution to the problem without 

relativistic effects where the solution is the same as 

equation 6. 

 

B. Relativistic Mechanics 

 

Relativistic effects can vary the sense of time 

dilation and changes in length. Such changes 

depend upon the velocity. Let our probe move at a 

stationary orbit about the Earth. The probe’s 

trajectory can be given for a geodesic [23] in: 
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where τ is the proper time and x is a linear measure. 

This is rewritten as: 
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The proper time is based upon the space-time 

interval that depends upon the metric: 
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Considering the Sun’s gravitational potential 

having a mass of M, the Schwartzschild metric using 

standard coordinates in a spherical coordinate 

system is: 
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After considerable terms and assumptions 

related to a plane based upon Newtonian Mechanics 

and defining constants of integration, this becomes: 
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If you allow u = 1/r as previously and obtain dr/dθ = - 

r
2
 du/ dθ as in the original definition, this results into: 
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Differentiating this equation results in: 
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 Note the value of β is basically from the Theory of 

Relativity and is small which is why this effect is not 

usually considered regarding short-term celestial 

mechanics. However, do we fully understand the 

impact of this value with respect to a given 

trajectory? Let us consider this point. 

 

C. Solution Rationale 

 

 Using relativity, the integral equation for the above 

ordinary differential equation is of interest as: 
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This is an inhomogeneous Fredholm equation or a 

Volterra integral equation. Because of the squared 

term
1
 for the independent variable and the coupling 

between these terms, this is nonlinear. The first term 

is a previously determined orbit trajectory solution 

without relativity. Here, we are assuming this tends to 

minimize the coupling impact with the integral 

equation.  

 

Normally in using an iterative process, an initial 

equation (the first term) is assumed as a starting 

                                                           
1 It is interesting to note where the form of this equation may also 

solve a problem in fluid dynamics as well as with other 

disciplines. Solving this problem, therefore is of value. 

Furthermore, the approach of using integral equations offers 

additional tools resolving mathematical physic challenges. 

position.  This is then used in the next correction 

using the recent previous values and the process 

continues until you can identify specific terms that 

represent solutions. The process is used differently 

here where the initially assumed value is the orbital 

trajectory solution without relativity. In this fashion, 

this is similar to evaluating a perturbation to the 

results using the nonlinear effects for corrections. 

The first term on the RHS represents using an 

iterative process to start the solution. This process is 

performed in a similar iterative fashion; however, 

some terms will not be included because of orders of 

magnitude effects. This means for generating a 

series if it exists, the absolute magnitude of the 

kernel is basically less than the value of 1 and with 

numerous K
n
 terms, this becomes insignificant. 
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This would be used to asymptotically approach 

the answer. The process for u starts with u0 with the 

first iterative and so on as u1 on up to u2 and u3: 

 







 



 







0

2

0

2

01

0

2

00

.d.d)(u),(K),(K)(u

ro,d)(u),(K)(u
   (17) 

 



0

2

0

22

1 2 ....d)(u),(KK),(K)(u:neht    (18) 

This is essentially the solution without relativity. 

Using this as another iteration, this becomes: 

  




 

 


0

2

0

2

1

2222

2 2 ....d....d)(u),(KK),(K),(KK),(K)(u      (19

 Let: ,K   then the next iteration results in: 

   









0

2

2

2

2

3
5432

3 8242
1

....d)(u),(K
KK

)(u                (20) 

This becomes: 

    .......
K

u  55443322

3 2222211 



    (21) 

 

Or for the n
th

 iteration, this is a series where: 

    ..........
K

u
nn

n

1155443322
22222211

 



  (22)

 

 

Simplifying this results
2
 in: 

  .




































21
1

21
1

K
un

 (23) 

 

 This is the final equation or trajectory solution with 

relativistic effects. Note that the term with unity is the 

trajectory without relativistic effects and the other 

term is considered as a correction. This can be 

further simplified in a form to separate the elliptical 

trajectory results with the objective of creating a 

correction factor: 

                                                           
2  There are some interesting points for consideration for this 

mathematical solution. For example, the basic solution to the 

linear integral equation looks like: 

 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 𝑖𝑠 𝑢(𝑥) =

 
𝜆 ∫ 𝐾(𝑥,𝑠)𝑓(𝑠)𝑑𝑠

1−𝜆 ∫ 𝐾(𝑥,𝑠)𝑓(𝑠)𝑑𝑠
.The solution for this problem is found: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑠)𝑢2(𝑠)𝑑𝑠 𝑖𝑠 𝑢(𝑥)

=  
𝜆 ∫ 𝐾(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠

1 + 2𝜆 ∫ 𝐾(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠
. 

This can be extended most likely as follows: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑠)𝑢𝑛(𝑠)𝑑𝑠 𝑖𝑠 𝑢(𝑥)

=  
𝜆 ∫ 𝐾(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠

1 + (−1)𝑛𝑛𝜆 ∫ 𝐾(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠
. 
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 (24) 

Note the first term in the RHS is the elliptical trajectory 

equation without relativity effects. The right-hand term 

on the RHS represents a correction factor to allow for 

relativity. The term is general enough to include a 

Green’s function using an initial value or a boundary 

value problem. 

 This results in: 
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u

 (25) 

 

Thus this includes the original trajectory with a 

correction factor. The variable ψ is the desired 

correction factor that, because of the kernel, will not 

be a constant function but rather a function of angular 

displacement during the orbit. For this, the integral 

equation kernel can be used for initial value or 

boundary condition problems. The kernel in the above 

problem where the initial angle θ0 is zero will become: 

 

or for these conditions: 

 

.cos),(K   1   (27) 

 

And thus the correction factor is: 
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 (28) 

 

The problem is when the numbers are included for 

a circular stationary orbit, the multipliers involve 11 

decimal places of 9 such as .9999999… onwards 

before different numerical values appear. This is the 

right-hand terms on the numerator and denominator. 

Clearly, since we do not have the sensitivity for these 

values, ψ can easily be assumed to be unity and for 

all practical purposes, the solution for the two body 

problem is more than adequate in terms of accuracy 

to ignore relativity. On this basis, it is clear the 

problem of Mercury’s perihelion required a measure of 

small minute amounts of azimuthal change over a 

considerable century to assess the contributions from 

the theory of relativity. Moreover, additional research 

may provide some rationales to explain the other 

anomalies previously mentioned. 

 

 
IV. CONCLUSIONS 

 

The purpose of this effort was to determine a 

potential means for predicting a testing function to 

assess different gravitational laws hopefully with 

examining a closed-loop trajectory. After considerable 

mathematics to treat the complexity of this problem 

nonlinear Volterra integral equation, a factor was 

identified that would provide the trajectory without 

relativity compared to the same trajectory with 

relativity. The resulting factor appeared to be a 

function of the azimuthal direction which occurs during 

an elliptical orbit; however, this azimuthal effect may 

be of a small consequence unless there is adequate 

sensitivity for these effects. This result opens the door 

for explaining several of the anomalous behavior of 

the solar system. 
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