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Abstract—The paper contains a proof for the 
hypothesis that classes P and NP do not coincide 
with the help of the two «natural» postulates. The 
postulates restrict capacity of the Turing 
machines and state that each independent and 
necessary condition of the problem should be 
considered by a solver (Turing machine) 
individually, not in groups. That is, a solver 
should spend at least one step to deal with the 
condition and, therefore, if the amount of 
independent conditions is exponentially growing 
with polynomially growing problem sizes then 
exponential time is needed to find a solution. To 
be efficient, the postulate needs a definite type of 
the problem (called here TSP – total solutions 
problem) which requires to find all valid solutions 
by means of some efficient generating scheme 
(substitution system). The paper gives 
specification of this problem, shows that it 
belongs to class NP and contains exponentially 
growing number of solutions which can be 
defined by means of some algorithmically efficient 
generating scheme which should be found by a 
solver. With the postulates, it is enough to build a 
natural (not pure mathematical) proof that P is not 
equal to NP. 

Keywords—computational complexity; Turing 
machine; P versus NP hypothesis; Satisfiability 
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I.  INTRODUCTION  

If one admits that there is no efficient algorithm for 
the NP-complete problems like SATISFIABILITY [1] 
(SAT, for short), then the «try-and-test» strategy 
remains an essential part of each solver for this type 
of problems. We show that under quite a general 
supposition no efficient algorithm exists for SAT.  The 
two hypotheses are required for our goals. The first 
one is the next: when working with problem conditions 
a solver (Turing machine) «takes into account» each 
independent and necessary condition separately from 
the others (that is, individually, spending at least one 
step for it). It is beyond our interests the solutions 
previously found for the problem(s). So, we are 
interested only in algorithms which find (initially 
unknown) solutions from the problem statement 
represented by some set of conditions. The solution 
process should warrant correctness of the result for 
each individual problem of the given type.  

The second hypothesis sounds like this: no Turing 
machine (TM) exists with throughput exceeding some 
constant value (this is similar to the well-known 
restriction on the light speed in relativity theory).  

These hypotheses are sufficient to prove the 
inequality between P and NP.  

To prove PNP, a number of significant efforts 
were undertaken. A short review of them can be found 
in [2]. Thus, the methods of diagonalization and 
relativization were used by analogy with the same 
methods applied to prove the undecidability of some 
well-known algorithmic problems, such as, for 
example, the HALT problem. However, as stated in 
[3], there are different relativizations addmitting both P 

= NP and P  NP. Also, a schematic approach was 
used, and we point to the results of A. Razborov [4, 5] 
who showed superpolynomial complexity of functional 
schemes in the AND, OR basis to realize a solver for 
CLIQUE problem. There are no encouring results in 
the AND, OR, NOT basis as well. The best complexity 
estimation for the 3-SAT problem is 1.5

n
 [6], where n 

stands for amount of variables. Other complexity 
estimations and approaches may be found in [7]. They 
testify, by the way, that resolution-based solving 
strategies for SAT have exponential computational 
complexity. 

There exists a viewpoint that P ?NP problem is 
not a pure mathematical and, in particaular, does not 
depend on the axioms of Zermelo-Fraenkel set theory. 

A lot of papers were published with the proofs both 

of  P = NP and PNP [8-10]. We can recommend 
web-site [11] for a closer acquaintance. Many proofs, 
especially for the statement P = NP were afterwards 
recognized as incorrect. Some proofs were left without 
attention, what resembles in some extent the situation 
with the proofs of the famous Ferma theorem until it 
was successfully solved by Andriew Wiles. 
Nevertheless, the P=?NP problem cannot be 
arbitrarily closed from the further attempts to solve it. 

One could seek a solution with the help of phisycal 
concepts. The idea to unite mathematical and physical 
approaches is presented, for example, in [12]. It is 
necessary to bear in mind that a Turing machine is not 
only an abstract mathematical notion, but also an 
information processing unit. Due to this, physical 
analogs get obviously important sense. This relates, 
for instance, to the notions of information quantity, 
entropy, throughput of the computational device, and 
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some others. These notions have, first of all, a 
physical sense. Namely from these positions with 
application of necessary mathematical means, the 
given paper is built. The postulates accepted here, 
have both mathematical and physical nature, that is 
why we do not claim that our approach contains a 

pure mathematical proof of the P NP  problem. But 
mathematical substantiation of the approach is a part 

of the common approach. 

 

II. FORMALIZATION OF THE PREREQUISITES 

Definition.  A condition is understood as a formula 
(formal expression) with variables. A condition can be 
true or false with respect to its variable values. 

Definition. A problem is understood as a non-
empty set of conditions. (An arbitrary) solution to a 
problem is a set of values of its variables satisfying all 
the explicitly stated conditions of the problem. 

When solving a problem, a solver (Turing machine) 
works with the problem conditions. A part of 
conditions is stated explicitly, while the other part of 
conditions is hidden in the problem formulation. Each 
condition links the solution elements. 

A condition is taken into consideration, provided 
the solver makes one or more steps to test if it is true 
or false, or treats it in the solution pocess. 

A condition that does not logically follows from the 
other conditions is called independent of those ones. 

If the falsehood of a condition leads to the loss of 
all solutions to the problem, then this condition is 
called necessary. 

Definition.  Any necessary and sufficient set of 
conditions of a problem A, which should be taken into 
consideration by its solver, is called infological set of 
this problem and designated by InfА

set
. The elements 

of InfА
set

 are called the infs. In general, the problem 
may have more than one infological set. 

 If  a truth value (true or false) of some condition 
does not influence on the correctness of a problem 
solution, then this condition is not included at least in 
one infological set of the problem. If non-fulfillment of 
a condition leads to loss of all problem solutions, then 
this condition is included into each infological set or 
can be inferred from it. Provided that a condition is 
independent of the other ones, it should be explicitly 
presented in infological set as we require of infs. 

In what follows, we shall deal only with those 
conditions (infs) which are necessary to find a solution 
and independent. 

We are interested only in the algorithms, which take 
infs into consideration, that is, not ignore them, since 
ignoring inf(s) means that a necessary and 
independent condition is not considered, so its 
fulfillment remains indefinite in the course of 

computation. We shall build a problem not permitting 
ignoring the infs.  

In this paper, we deal with the problems formulated 
with n >1 Boolean variables x1, x2, ... , xn (or integer-
valued variables taking values from the restricted 
diapazons). A solution to the problem is represented 
by some feasible (satisfying) interpretation (a set of x1, 

x2, ... , xn values meeting the problem conditions stated 
in its specification). This somewhat differs such type of 
problems from YES-NO problems, however, not 
essentially. A principal point consists in the following: 
whether it is sufficient to find any one feasible solution 
(satisfying interpretation), if it exists, or it is required to 
find all feasible solutions. 

Definition. A generating scheme represents a rule 
(rules), pointing to how to compute each solution to 
the problem. 

Definition. The problems requiring to find any one 
feasible (valid) solution (if exists) will be called ASP 
(any solution problems), while the problems requiring 
to find some generating scheme to find all solutions, 
will be called TSP (total solution problems). 

It is clear that if TSP has exponentially growing set 
of feasible solutions then even their simple 
enumeration requires an exponential time expenses. 
However, the answer to TSP may be in some cases 
represented as a set of generating rules 
(substitutions) producing values for the problem 
variables. To be clear, let us consider a problem with 
integer-valued variables yi: 

52y1 – 15y2 – 3y3 = 2, 

y1  [–2, 2], 

y2   [–3, 7], 

y3  [–23, 2],  all yi are integer. 

One matter is to seek any one valid solution, 
satisfying the above specification. Another matter is to 
find some substitution system for yi enabling to get all 
solutions with polynomial time for each one. In the 
example, such a substitution system has the next 
possible form: 

x1 + x2 + x3 = 2, 

  y1 = x1 + x2 – 2x3, 

      y2 = 3x1 + 4x2 – 3x3, 

       y3 = 2x1 – 3x2 – 20x3, 

                          xi  [0,1],  all xi are integer. 

Additionally, it is required that: 

 R1) the least (the greatest) value of Li (Ri) for each 
variable yi obviously is not less (greater) than the sum 
of all negative  (positive) coefficients in the 
corresponding substitution for yi or 0, if there are no 
such coefficients. 

 R2) substitutions for хi are being looked for in a 
strict order from the substitution system accordingly to 
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Gauss direct method of exclusions [13, vol.1, p.53] as 
follows: х1 is expressed from the substitution for y1, 

and х1 should have coefficient +1 or 1 in this 
expression. Then expression for х1 is used instead of 
х1 in the expressions for y2, …, yn. Then one takes 
expression for y2 and gets substitution for х2 from it. 

Again, х2 should have coefficient +1 or  1. The 
obtained substitution for х2 is then used in expressions 
for y3, …, yn. The process repeats by analogy for the 
rest variables хi, i = 3, 4, …, n by replacing хi in yi+1, …, 

yn.  Each time хi should have coefficient either +1 or 1 
in the expression for yi. The obtained substitutions 
should contain integer coefficients only. Thus, in the 
example we have 
 

x1 = y1 – x2 + 2x3;     x2 = –3y1 + y2 – 3x3; 

                       x3 = 17y1 – 5y2 – y3. 

                     
Clearly, from the obtained substitutions with the help 
of the backward Gauss method one can find the 
integer-valued substitutions for each хi with variables 
yj   (i,  j = 1, …, n)  only:                      
  

x1=89y1 – 26y2 – 5y3;      x2= –54y1 + 16y2 + 3y3; 

x3=17y1 – 5y2 – y3.           
 

Because of the crucial importance of this problem, let 

us denote 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑛}, 𝒙 =
{𝑥1, 𝑥2, … , 𝑥𝑛}, 𝒅 = {𝑑𝑖|𝑑𝑖 = [𝐿𝑖 , 𝑅𝑖]}  and use the 

abbreviation SUBST(y, x, A, d, n, c, ) to denote its 
specification with the following formulation. Let there 
be given 
   
                             a1y1 + a2y2 +…+ anyn = c,                      (1) 

               yi  [Li, Ri],     (yi, ai, Li, Ri, c – all integer).                                                                      
 
with the known ai, Li, Ri, c and unknown yi, i = 1,…, n. 
Denote the length of the specification (1) by LGЗ. 

Then it is asked, if for the given (fixed) polynomial  
there exists efficiently verifiable condition and the 
system of substitutions of the type 
 

x1 + x2 + … + xn = c, 

                                      xi  [0, 1],                                    (2) 

                        yi = bi1x1 + bi2x2 + … + binxn,    i = 1, …, n, 

                     all bij are integer,  
and     
 
1) the sizes of the substitution matrix B = [bi,j] and the 

sizes of the inverse matrix B-1

 
do not exceed  (LGЗ); 

2)  R1, R2 are satisfied.  

Definition [13]. The sizes of a rational number  = 

p/q  (p, q – are integer and  coprime numbers, q 0), 

rational vector с = (1,2,...,n)  and rational matrix B =    

[ bij ] are defined as follows 

size() = 1+ log2(|p|+1) + log2(|q| + 1), 

size(c) = n + size(1) +...+ size(n), 

size(B) = m∙n + i,j size(bij), 

where  x  is minimal integer value greater than x. 

Theorem 1. If for conditions (1) there exists 
system (2), then for each integer-valued set, satisfying 
(1), there exists a unique integer-valued set, satisfying 
(2), and vice versa. 

Proof. Can be simply obtained from linear algebra 
provided that matrix B = [bi,j] is not singular. The 
requirement of integrality of the coefficients is fulfilled 
by R1, R2.  

Note 1. There may be more than one suitable 
system (2) for (1) in general case.  

Note 2. The number of satisfiable problems 

SUBST(y, x, A, d, n, c, ) is infinite. Elementary 
technique to generate them consists in the following. 
Take each substitution yi = bi1x1 + bi2x2 + … + binxn  
starting with i = 1 and set b11 = 1 with the other 
coefficients b1j (j > 1) representing arbitrary integer 
values.  For i = 2, the coefficients b2j (j <>2) represents 
arbitrary integer values, besides b22. The value of b22 is 
defined in such a way that after performing 
substitution for x1 from y1 = x1 + b12x2 + … + b1nxn 

to 

make b22 = 1 or b22 = 1 and so on.   

Note 3. Requirement R2 is not peculiar. One can 
restrict the substitutions for хi by yj   (i, j = 1, …, n) only 
by integer-valued ones, since it is possible to show 
how an arbitrary integer-valued substitution matrix can 
be reduced to the form meeting R2. For this aim, one 
should apply the known technique on the basis of 
Euclidean method for seeking the integer-valued 
solutions of the linear algebraic equalities with multiple 
variables and integer (rational) coefficients (see, for 

instancce [14, p.p. 5253]). However, the technique, 
outlined above, is further used to estimate the 
memory expences for representation of the 
coefficients of the substitution matrix B and its reverse 
matrix B-1. 

It is clear, that from system (2) the values of xi  are 
defined elementary and deliver the corresponding 
solutions to the original problem. Nethertheless, it is 
also clear that a solution may not exists, what 

depends on the form of polynomial  and initial 
formulation (1). 

Theorem 2. SUBST(y, x, A, d, n, c, ) is 
polynomially reducible to  SATISFIABILITY problem. 

Proof. There exists a polynomial complexity 
method to test the condition  

x1 + x2 + … + xn = c, 

xi  [0, 1], i = 1, …, n. 

There also exists a polynomial complexity method 
to generate values y = (y1, y2, …, yn) for an arbitrary 
guess for x = (x1, x2, ..., xn), satisfying the above 
conditions, and using an arbitrary (a priori unknown) 
substitution matrix B (with the coefficients also defined 
as a guess). Also, there exists a polynomially efficient 
method for testing the conditions 

a1y1 + a2y2 +…+ anyn = c, 
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               yi  [Li, Ri],     (yi, ai, Li, Ri, c – all integer).                                                                      

 

Finally, there is a polynomially efficient algorithm to 
get the substitutions for xi (limited only by the direct 
forward Gaussian elimination method) to test the 
fulfillment of R2. 

It is necessary to note that by means of the given 

polynomial , one is in position to efficiently define the 

sizes of the Boolean representation of the integer-
valued coefficients of substitution matrix B and its 
reverse matrix B-1. There remains to point to the fact 
that maximal sizes of the intermediate coefficients 
obtained by procedure for verifying the requiremeent 

R2, are restricted by the value 4size(B)  [13, vol. 1, p. 
56] where size(B) defines the sizes of the substitution 
matrix B.  

The values of intermediate coefficients can be 
found from the relationships pointed to in Gantmaher’s 
book [15, p. 43] and are expressed through the minors 
of the matrix B. If M is a maximal absolute value of a 
coefficient in substitution matrix B, then the value of 
each minor in B is not higher than n!∙Mn  what requires 
no more than n∙Log2(n∙M) bits for representation in 
memory, i.e. is estimated as O(size(B)) with size(B) not 

exceeding n2∙(LGЗ). 

From the above considerations, one can conclude 
that the technique used to reduce SUBST(y, x, A, d, n, 

c, ) to SAT is polynomially efficient.   It follows then 
that if there not exists a polynomially efficient 

algorithm for SUBST(y, x, A, d, n, c, ) with some fixed 

 then SAT has no polynomial solution as well.      

Next, we formulate two Postulates, which play 
decisive role for the goals of this paper. 

 

III. THE POSTULATES 

POSTULATE 1.  

Any TSP-problem requires to individually treat 
(take into consideration) each independent and 
necessary condition, spending for this at least one 

step of the solver (Turing machine  TM) work. That 
is, if the number of all independent and at the same 
time necessary conditions is q then the number of 
steps, TM should perform, is not less than q. 

A natural explanation of POSTULATE 1 may be 
given through the system of logical clauses (disjuncts) 
D1, D2, ..., Dp forming a SAT problem. In fact, if some 
clause depends on the others (that is, logically follows 
from them) then that clause can be deleted (not taken 
into consideration) from SAT without loss of every 
solution what is necessary for TSP-problems. On the 
contrary, if a clause does not depend on the others 
than it cannot be deleted and should be taken into 
account individually or in groups. However, 
POSTULATE 1 does not admit the last opportunity. 

Indeed, let r = p & q  p, with p and q mutually 
independent (r is a group, consisting of the conditions 

p and q). From the logical value (true/false) of q, one 
cannot establish logical value of p without analyzing p 
individually. By this, the value of the whole group r 
cannot be established without knowing logical values 
of the conditions p and q from r. 

Independence has a fundamental nature. If some 
condition C is necessary and does not depends on the 
other conditions, then truth or falsity of those last says 
nothing about truth or falsity of C. Hence, C should be 
taken into consideration by necessity.  In a standard 
way, it is adopted that formula C does not depend on 

the formulas 1, 2,..., k, provided that there exists 

some interpretation I, such that 1(I) & 2(I) &...& k(I) 

= true, but C(I) = false.  

This definition of independence should be 
somewhat modified for the paper needs. Let I1, I2,..., In  
be particular interpretations and I = I1I2... In stand for 

their concatenation. Let 1(I) = f(I1), 2(I) = f(I2),...,      

n-1(I) = f(In-1), n(I) = f(In), and  there exists 

interpretation I = I1I2...In, in which 1(I), 2(I),...,           

n-1(I) all are true, and n(I) is false.  Hence, n does 

not depend on 1(I), 2(I), ... , n-1(I). 

This formulation of independence will be further 
referred to as independence in private interpretations. 
Evidently, independence in private interpretations is a 
particular case of the independence defined in 
standard way. 

Finally, a condition C is a necessary one, provided, 
that its failure (falsity) leads to the loss of all solutions.  

Note that an independent condition is not 
obligatory a necessary one. A necessary condition 
may be dependent. The conditions explicitly 
formulated in a problem specification are necessary 
ones. 

We shall use the next  

Lemma. Let &F be a compatible system of 

logical formulas. Then from &F  H  follows  & H 

 F   ( denotes logical negation). 

Proof folows from equivalence xy  x  y. 

Definition of reduction of a problem А to problem В 
can be found in [1]. 

Denote by TH the throughput of TM; by N – the 
number of steps it performs in order to rich the final 
state; by I – the number of the infs, TM takes into 
consideration during its work. Let TH = I / N.  

            
POSTULATE 2.  
 
For each totally finite TMA, and each common problem 
solved by TMA, the following relationship is true 
 

                                 THA  cA   ,                          (3) 
 

where cA stands for some fixed constant value 
related to this TMA.  
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From (3) one concludes that each physical data 
processing device cannot process an infinitely many 
infs (bits of information) per one step 
(cycle/transmission) of its work. This fundamental 
principle is asserted, in particular, in [16].   

Let us briefly dwell on a possible counter-argument 
through the well-known acceleration theorem of M. 
Blum [17]. This theorem asserts that there exist 
general recursive functions f with values from {0,1} 

and such that for each TM  Zi, calculating  f(n) for i(n) 
steps, there exists another TM Zj, which calculates  

f(n) significantly faster for j(n) steps  with i(n) > 

2j(n). Moreover, there is an infinite sequence  of TMs, 
calculating f, in which for every neighbor pair of Turing 

machines Zs и Zs+1 one has inequality s(n) > 2s+1(n), 
correct for almost all n.                      

From Blum’s theorem, however, it does not follow 
existence of TM with unlimited throughput. Even if one 
accepts that TMs, computing the same function, 
process the equal quantity of information, the Blum’s 
theorem only states for each pair Zs и Zs+1 availability 
of the fixed number m defined for this pair of TMs, 

such that for almost each n > m one has s(n) > 2s+1(n). 
This means that starting from the value m, time 
expences of Zs grows significantly faster than time 
expences of Zs+1. The Blum’s acceleration  theorem 
does not impose restrictions on the upper boundary of 

i(n) for all indices i from . Hence, for each fixed n, 
the fastest computation of f(n), say on Zr,  may require 
an arbitrary many number of steps, while for l > n the 
fastest computation of f(l) is performed by another 

TM, say, Zy with very great value of y(l) as well.  

We have reach the point in our reasoning where it 
is required to introduce some consistent TSP problem 
A with exponentially growing  sizes of InfА

set
 for linearly 

grow of the variables number n. It requires of us to 
show that minimum Conjunctive Normal Form (CNF) of 
this problem grows exponentially in sizes provided, 
that the number of variables grows linearly. 
Consequently, this problem cannot be solved for 
polynomial time whichever solver is used, provided, 
that all problem infs are taken into consideration and 
each inf is considered individually, not in groups. The 
reader evidently has guessed that we intend to use 

SUBST(y, x, A, d, n, c, ).  

 

IV. THE  INFS 

  Some NP-complete problems use the condition 
formally represented as  

             a1x1 + a2x2 +... + anxn = c,                          (4) 

where ai , c, xi are integer non-negative numbers 

and xi {0, 1}. In particular, some private case of (4) is 
treated in a Minimum-Size Covering Problem (MSCP) 
of a 0,1-matrix. SAT can be reduced to (4). Let us call 
(4) a Container Packing Problem (CPP).  One can see 
that CPP is an NP-complete problem.  Now ask, if 
CPP can be polynomially reduced to equivalent SAT 

provided, that both problems are specified with the 
same set of variables? The answer is delivered by 

Theorem 3. It is impossible to reduce CPP(x1, x2, 

…, xn) to equivalent SAT(x1, x2, …, xn) with the sizes of 
SAT(x1, x2, …, xn) restricted by some polynomial  of n. 

Proof. Consider the equation 

               x1 + x2 + ... + xn    =  (n +1)/2                 (5) 

with odd n. 

Let us build CNF for (5) in order to demonstrate 
that its sizes grow exponentially with linear growth of 
n. It is easy to comppose the disjunctive normal for 
(DNF) for (5). To make the proof clear, consider the 
equation 

                 x1 + x2 + x3 + x4 + x5 = 3                       (6) 

with DNF  

  x1x2 x3x4x5  x1x2x3x4x5   ...  x1x2x3x4x5.   (7) 

Let a conjunction Ki =(x1)
1(x2)

2 ... (xn)
n deliver a 

solution to (5) ((x)  = x, if  = 1 and х, if  = 0). Call 

the set Ki*= (x1)
1-1(x2)

1-2 ... (xn)
1-n conjugate to set  Ki. 

Disjunction (clause) Di (Di*), associated with Ki (Ki*) is 
defined as follows 

   Di = Ki = (x1)
1-1  (x2)

1-2  ...   (xn)
1-n,       (8a) 

    Di* = Ki* = (x1)
1  (x2)

2  ...   (xn)
n.         (8b) 

They say that D is deducible from D, if D    D. 

A clause Dj is a simple implicit clause with respect 
to logical formula F(x1, x2 ..., xn) if 

 (i)     F(x1, x2 ..., xn)  Dj, 

(ii)     Dk ((Dk  Dj ) & ( F(x1 ,x2 ..., xn)  Dk )) 

 ( denotes implication). 

The notion of a resolvent is standard [18]. Notice 
here that resolution principle by J. Robinson is a 
universal inference rule. 

A set Z of clauses is called closed if each resolvent 
(logical consequence), deducible from any subset of 
Z, belongs to Z.  

A subset П of the set of clauses Z is called a 
covering set of Z provided, that each clause from Z 
either belongs to П or can be deduced from П. A 
covering set Пmin is a minimal if it consists of the 
minimum number of clauses among all sets, covering 
Z. 

Each subset of the independent clauses of the set 
R is called a kernel of R. Obviously, each Пmin is a 
kernel. The opposite, however, may be false. 

Return to (6). It is clear that conjunction 

                    К = x1x2 x3x4x5 

belongs to DNF of (6) and defines the associated 
clause (8a)  

                   D = x1  x2   x3  x4  x5. 
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D is not deducible from the set of clauses SAT, 
equivalent to (6) (thereafter denoted as D-SAT). This 
means, that there exists an interpretation I in which 

each clause from D-SAT is true, while D is false, and 
this interpretation is x1 = x2  = x3 = ’1’;  x4 = x5 = ’0’ 

delivering true value to К. 

Further, no one clause D, D  D can be 

deduced from D-SAT, e.g. x1  x2, or x4  x5, or  x1 

cannot be deduced from D-SAT. It is also clear that D-
SAT is not satisfied with each set conjugate to Ki from 
DNF representation of (5), (6). For instance, D-SAT is 

not satisfied with the set (К)* = x1x2x3x4x5, 

determining associated clause (D)* = x1  x2  x3   

x4  x5. 

Consider clauses D and (D)*. From our 
considerations follows that the clauses                               

    1 = x4  x5,  2 = x3  x5,  3 = x2  x3   x4                                                     

and the others of that kind are not deducible from 
D-SAT, that is, do not belong to the clauses of D-SAT 
and cannot be deduced from them by means of the 
existing inference rules, since they are refuted in 
some intrepretation satisfying (6).  Let us now find 
such an arbitrary minimum-size subset of the clause 

(D)* which is deducible from D-SAT by virtue of the 
inference rules (in particular, by the resolution rules). 
The sizes of a clause (its subset) define the number of 

literals in it. So, d^  =  x1  x4  x5 represents one such 

a subset (d^  (D)*). One can easily convince himself 
(herself) that each interpretation, satisfying (6), 
satisfies d^ as well. From this, and well-known K. 
Gedel’s theorem about equivalency of syntactic and 
semantic deducibility [8], one concludes that d^ either 
belongs to D-SAT or can be inferred from D-SAT with 
inference rules. We are dealing with D-SAT with 
minimum possible sizes, that is, coinciding with a Пmin 
for (6). 

It is clear that any proper subset of d^ cannot be 

deduced from D-SAT. For instance, x1  x4 is not 
deducible from D-SAT since it belongs to the clause 

D = x1  x2   x3  x4  x5 not deducible from D-
SAT as was explained above. Let us notice that no 
one clause with a single or two literals is included in 
D-SAT or deduced from D-SAT as it is a proper 
subset of some broader clause that is not derived 
from D-SAT. Next, there are no clauses (nor they can 
be deduced) in D-SAT with 3 letters like those 

           xi   xj  xk,   xi  xj  xk,    xi   xj  xk                                                  

by the same reason: they represent a proper part 
of some underivable clauses. Hence, in D-SAT may 

be included the clauses of the form xi  xj  xk or some 
subset of more broader clauses, from which logically 

follows xi   xj  xk. From this follows that d^ may be 

deduced in the best case from a group of clauses min 
with at least two (deducible) clauses, e.g. 

                           x1  x2   x4  x5,    

             min =   

                           x1  x2  x4  x5.  

Each clause from min provided, that it belongs to 
D-SAT, can be replaced by d^, from which it follows. 
Consequently, since our goal is to refute including d^ 

= x1  x4  x5 in D-SAT, it is necessary to recognize that 

both clauses x1  x2  x4  x5   and   x1  x2  x4  x5 

can be deduced without use of d^. Consider the first of 
them 

d(A) =  x1  x2   x4  x5. 

Clearly, any subclause of d(A) with fewer letters 
does not belong to D-SAT and cannot be deduced 

from it, excluding d^  (but we have supposed that d^  

D-SAT). There is a possibility (among the others!) to 
deduce d(A) from another two deducible from D-SAT 
clauses: 

                   d(B) = x1  x2  x4  x5  x3     

 and                 d(C) = x1  x2   x4  x5 x3. 

Again, no one subclause of d(C) can be deduced 

from D-SAT, excluding x1  x4  x5. So, consider this 
second clause d(C). Any proper its subclause is   
underivable and does not belong to D-SAT, excluding 

x1  x4  x5. Moreover, d(C) is not deduced from any 
broader clauses as there are no such clauses 
anymore. So, d(C) cannot be deduced with the help of 
resolution inference rules. There remains a possibility 

to deduce d(C) with the help of some clause d* Пmin 
with lesser sizes. Clearly, d* cannot be a proper part 
of d(C) as we accepted. Now, represent Пmin = F&d* 

where  and d* are mutually independant (d* does 

not follow from F). Then F&d* d(C). By Lemma,      

F &d(C)  d*. Replace d(C) by x1x2x4x5x3. 
Clearly,  

             F & d(C) = x1 x2 x4 x5 x3,                       (9) 

and                                 

             x1 x2 x4 x5 x3   d*.                            (10) 

(The other possibility is F&d(C) = □ (□ denotes 

false). From this, F  d(C), what contradicts to the fact 
that  to deduce d(C), one needs to use d*.) 

Again, d*  stands for some part of the conjunction 

x1x2x4x5x3. In these terms, d* stands for some part 

of the clause   d(C) = x1  x2   x4  x5 x3. As we now 
know, no proper part of d(C) is valid besides that one 

containing d^ = x1  x4  x5. However, in this case, d* 
may be replaced by d^ with preserving the sizes of 
Пmin. 

This reasoning, remains valid with respect to any 

clause of the form xi   xj  xk with the pairwise different 
i, j, k. 

We can generalize our considerations to an 
arbitrary case (5). Consider a minimum-size positive 
deducible clause  

                  d(D)  =  xi1   xi2  ...  xi(n+1)/2. 
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Then it may be deduced from the next pair of the 
clauses 

d(E)  =     xi1   xi2  ... xi(n+1)/2   xk, 

d(F)  =     xi1   xi2  ...  xi(n+1)/2 xk. 

For the second clause d(F), one cannot use fewer 
number of positive letters since it is refuted in some 
satisfying interpretation for the SAT (5). Let’s denote 
this SAT as G-SAT. Consider this second clause d(F) 

and notice that any its proper subclause does not 
belong to G-SAT nor is deduced from G-SAT, besides 
d(D). Hence, if this clause is deducible from the other 
clauses, then it should of course, be deducible from 
the pair of clauses 

d(E)  = xi1   xi2  ... xi(n+1)/2   xk  xr, 

d(F)  = xi1   xi2  ...  xi(n+1)/2  xk  xr . 

Each of the above clauses is either deducible from 
G-SAT or belongs to G-SAT. Again, any proper 
subclause of d(F) is not deducible from G-SAT nor 
belongs to it, excluding d(D). Hence, as we excluded 

belonging xi1  xi2  ...  xi(n+1)/2   to G-SAT, then either 
d(F)

 is deduced from the other clauses of the G-SAT, or 
belongs to the G-SAT. In the last case, this clause can 
be replaced by d(D). In the first case, one should 
consider the next pair of the deducible clauses 
resolving in d(F). One of the clauses of that pair would 

be the clause xi1  xi2  ...  xi(n+1)/2  xk  xr  xt.  
This process can be continued by analogy and stops 
after all G-SAT variables are used. Then, there 
remains a possibility to replace one of the remaining 
clauses of the form 

    d(G)  = xi1   xi2  ...  xi(n+1)/2  x i(n+1)/2+1  ...  x n  

by xi1  xi2  ...  xi(n+1)/2. Clearly, d(G) cannot be 
deduced from any pair of clauses provided, that none 
of them contains the subclause d(D) and, therefore, 
may be replaced by d(G) from which it follows. More 
strictly, 

 Пmin =_& d*_ where _ and d*_ are mutually 

independant (d*_ does not follow from _ and has 

sizes smaller than the sizes of d(G)) and _& d*_ 

d(G). As was shown earlier, in these terms d*_ should 
contain d(D) otherwise it fails in some valid 
interpretation for G-SAT. 

There remains to make a final step in the proof. In 
each conjugate set Ki* one can define a unique 
clause di^ (d(D)) (like that one considered above, and 
consisting with positive letters only (di^ is written with 
the positive letters from the representation of Di* = 

Ki*). Clearly, all such clauses di^ (d(D)) form a kernel 
and belong (as we have shown) to some minimum-
size covering set Пmin of G-SAT for all possible cases 
of di^ (d(D)). The number of such clauses di^ (d(D)) is 
Сn

(n+1)/2 = О(2n/2). By this, one concludes that minimum-
size CNF for (5) contains exponentially growing 
number of clauses with respect to the number of 
variables n. 

V. THE  SUBST(Y, X, A, D, N, C, ) PROBLEM 

  Consider a system of substitutions   

     уi = аi + bi1x1 + bi2x2 +...+ binxn ,   i =1, n,         (11) 
 
with integer ai, bij, and binary xi. The main 

requirement to the substitutions (11) is to provide the 
uniquness of the transformation, or in the other words, 
to ensure that each set x* = <x*1, x*2, ..., x*n> is 
mapped to unique set y* = < y*1, y*2 ,... y*n > (the 
opposite is obvious). The said requirement is fulfilled 
by nondegeneracy of the transformation matrix B = 

[bij].  
    From (11),  

                             y = B-1 ∙(x  a).                            (12) 

Theorem 4 [13].  
1. If the system of rational equations (11) is 

consistent then it has a solution y with the sizes 

restricted by some polynomial 1 of the sizes of B-1 

and   (x  a). 
2. The inverse matrix B-1 has the sizes, restricted 

by some polynomial 2 of the matrix B sizes. 
Notice that we are interested in the values of yi 

which define the values of хi  {0,1}. For convinience, 
let us set b = 0. From this, the sizes of y are restricted 

by some polynomial 3(size(B)) =1 (2(size(B))). 
One can see that for m = n and some fixed 

constant k,  size(B)  O(k∙n2∙(maxi,j size(bij))). So, there 
remains to provide that the value of size(bij) grows not 
faster than some fixed polynomial. However, this 
requirement is trivial as in selecting the coefficients of 
the matrix B one should preserve only its 

nodegeneracy (det B 0). 

We have reached the final point. Accordingly to 

SUBST(y, x, A, d, n, c, ), it is necessary to build a 
function f (generated by the system of substitutions) 
mapping each satisfying interpretation I(x*) (x-values) 
satisfying system (2), to the unique interpretation I(y*) 
(y-values) satisfying system (1) or vice versa. It was 
demonstrated that the number of feasible 
interpretations for the system (2) grows exponentially 
with linear growth of the number of variables n. The 

reverse function f 1 can be found (in the form of a 
reverse matrix B-1) provided, that the matrix B of 
substitutions is nondegenerate. Therefore, if to 
consider each pair of interpretations (x*, y*) satisfying 
to (1, 2), separately from the other pairs (x, y), then it 
is necessary to consider exponentially growing 
number of all pairs (x, y), and by POSTULATE 2 to 
spend exponentially growing time to solve SUBST(y, 

x, A, d, n, c, ) in general. However, let us try to refute 
this conclusion and suppose that after establishing 
some part of all pairs (x, y), satisfying (1, 2), the 
remaining pairs of interpretations may be not 
considered and, therefore, be ignored by the solver. 
Again, to make our reasoning clearer, consider an 
illustration. Let the generating rule be as before 

                            x1+x2+x3+x4+x5 = 3.                         (13) 
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The next table shows all feasible pairs of 
interpretations, satisfying the systems (1, 2). 
 
Table 1. The pairs of iterpretations deliverig the solutions to the   

              systems (1, 2)  
 

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 

0 0 1 1 1 y11 y21 y31 y41 y51 

0 1 0 1 1 y12 y22 y32 y42 y52 

0 1 1 0 1 y13 y23 y33 y43 y53 

0 1 1 1 0 y14 y24 y34 y44 y54 

1 0 0 1 1 y15 y25 y35 y45 y55 

... ... ... ... ...  ... ... ... ... 

1 1 1 0 0 y1,0 y2,10 y3,10 y4,10 y5,10 

We assume that the rows of the table 1 are 
arranged in descending strong order of values in the 
column y1. This assumption does not violate the 
strength of the results obtained. With the help of the 
rule R2, it is possible to generate an infinite number of 

the individual problems SUBST(y, x, A, d, n, c, ) 
satisfying this assumption. For this, one should use 
the first substitution     

               y1 = b11x1 + b12x2 + … + b1nxn                (14) 

 for y1 with the coefficient b11 = 1 and each subsequent 

coefficient b1j > k < j b1k.  It may be proved by induction 
on the number of variables in the substitution (14) that 
in this case the values of  y1 would be arranged in 
desceinding order (leave this to the reader). Consider, 
for example, the fifth row in the table 1 

 

1 0 0 1 1 y15 y25 y35 y45 y55 

 

Suppose that it depends on the previous rows in 
the table 1. This means, that the values y15, y25, y35, y45, 

y55 automatically fall into ranges [Li, Ri] provided, that 
the previous rows <y1i, y2i, y3i, y4i, y5i> have fallen into 
ranges [Li, Ri]. However, before solving any individual 

problem SUBST(y, x, A, d, n, c, ) (including the 
considered one) this fact is unknown, and there exist 

two types of   SUBST(y, x, A, d, n, c, ) such that y15 
falls into [L1, R1]  for the first type, and does not fall 
into [L1, R1]  for the second type of  SUBST(y, x, A, d, n, 

c, ). Indeed, in comparison with the previous row 
<y14, y24, y34, y44, y54> the following relations take place 

y15 < y14, y14 [L1, R1]. Then, by increasing the value of 

L1 one can provide that y11, y12, y13, y14  [L1, R1], but  

y15 [ L1, R1]. This means that the row <y15, y25, y35, y45, 

y55> should be taken into consideration by the solver 
even in the case that the previous rows satisfied the 
corresponding ranges [Li, Ri]. Note that 
lexicographical descending order of the rows with 
interpretations can be obtained by a simple indeces 
mixing in variables x1, x2, x3, x4, x5 as they are mutually 
independent. 

The situation, we have described, is applicable to 
any part of the table with the interpretations (including 
the entire table) and means that each row of the table 
would be considered separately by virtue of 

POSTULATE 1 as a formula independent in particular 
interpretations from the other ones. Indeed, one can 
define the next formulas 

1(I) = h(SUBST(y, x, A, d, n, c, ), I1), 2(I) = 

h(SUBST(y, x, A, d, n, c, ), I2), ...,  n(I) = h(SUBST(y, 

x, A, d, n, c, ), In) where h(SUBST(y, x, A, d, n, c, ), Ii) 
is true for the i-th row of the interpretation table 1 with 
Ii =(xi, yi) (xi, yi  represent the corresponding x-set and 
y-set in the i-th row) if and only if A(yi)

T = c and each 
member of yi falls into the corresponding range di from 

d  we have showed above, 1, ... , n  are independent 
in private case. By POSTULATE 1, each of these 
functions should be considered by the solver 
separately from the others. 

This last remark completes the natural proof for    

P NP.  

 

VI. CONCLUSION 

The proof of РNP given in the article is not purely 
mathematical, since it uses, in any case, one purely 
physical postulate about the limited capacity of the 
Turing machine. 

An obvious correspondence to the postulate of the 
theory of relativity restricting the speed of light can be 
found if we draw an analogy with the emission of a 
photon of light and the operation of transition in a 
Turing machine (in this case, the speed of light is a 
physical analogue of the speed of information 
processing by a Turing machine). 

The postulates we have introduced characterize 
the understanding of complexity that is intuitively used 
by the algorithms developers. Therefore, we are not 
talking about a "universal" mathematical proof of the 

РNP formula, but about a proof within the framework 
of the accepted postulates. 
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