
Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3555

Natural Substantiation of the Inequality
between P and NP

Oleg V. German*
State University of Informatics and RadioElectronics

220600, P. Brovki street, 6,
Minsk, Rep. of Belarus

*Corresponding author e-mail:ovgerman@tut.by

Abstract—The paper contains a proof for the
hypothesis that classes P and NP do not coincide
with the help of the two «natural» postulates. The
postulates restrict capacity of the Turing
machines and state that each independent and
necessary condition of the problem should be
considered by a solver (Turing machine)
individually, not in groups. That is, a solver
should spend at least one step to deal with the
condition and, therefore, if the amount of
independent conditions is exponentially growing
with polynomially growing problem sizes then
exponential time is needed to find a solution. To
be efficient, the postulate needs a definite type of
the problem (called here TSP – total solutions
problem) which requires to find all valid solutions
by means of some efficient generating scheme
(substitution system). The paper gives
specification of this problem, shows that it
belongs to class NP and contains exponentially
growing number of solutions which can be
defined by means of some algorithmically efficient
generating scheme which should be found by a
solver. With the postulates, it is enough to build a
natural (not pure mathematical) proof that P is not
equal to NP.

Keywords—computational complexity; Turing
machine; P versus NP hypothesis; Satisfiability
problem

I. INTRODUCTION

If one admits that there is no efficient algorithm for
the NP-complete problems like SATISFIABILITY [1]
(SAT, for short), then the «try-and-test» strategy
remains an essential part of each solver for this type
of problems. We show that under quite a general
supposition no efficient algorithm exists for SAT. The
two hypotheses are required for our goals. The first
one is the next: when working with problem conditions
a solver (Turing machine) «takes into account» each
independent and necessary condition separately from
the others (that is, individually, spending at least one
step for it). It is beyond our interests the solutions
previously found for the problem(s). So, we are
interested only in algorithms which find (initially
unknown) solutions from the problem statement
represented by some set of conditions. The solution
process should warrant correctness of the result for
each individual problem of the given type.

The second hypothesis sounds like this: no Turing
machine (TM) exists with throughput exceeding some
constant value (this is similar to the well-known
restriction on the light speed in relativity theory).

These hypotheses are sufficient to prove the
inequality between P and NP.

To prove PNP, a number of significant efforts
were undertaken. A short review of them can be found
in [2]. Thus, the methods of diagonalization and
relativization were used by analogy with the same
methods applied to prove the undecidability of some
well-known algorithmic problems, such as, for
example, the HALT problem. However, as stated in
[3], there are different relativizations addmitting both P

= NP and P  NP. Also, a schematic approach was
used, and we point to the results of A. Razborov [4, 5]
who showed superpolynomial complexity of functional
schemes in the AND, OR basis to realize a solver for
CLIQUE problem. There are no encouring results in
the AND, OR, NOT basis as well. The best complexity
estimation for the 3-SAT problem is 1.5

n
 [6], where n

stands for amount of variables. Other complexity
estimations and approaches may be found in [7]. They
testify, by the way, that resolution-based solving
strategies for SAT have exponential computational
complexity.

There exists a viewpoint that P ?NP problem is
not a pure mathematical and, in particaular, does not
depend on the axioms of Zermelo-Fraenkel set theory.

A lot of papers were published with the proofs both

of P = NP and PNP [8-10]. We can recommend
web-site [11] for a closer acquaintance. Many proofs,
especially for the statement P = NP were afterwards
recognized as incorrect. Some proofs were left without
attention, what resembles in some extent the situation
with the proofs of the famous Ferma theorem until it
was successfully solved by Andriew Wiles.
Nevertheless, the P=?NP problem cannot be
arbitrarily closed from the further attempts to solve it.

One could seek a solution with the help of phisycal
concepts. The idea to unite mathematical and physical
approaches is presented, for example, in [12]. It is
necessary to bear in mind that a Turing machine is not
only an abstract mathematical notion, but also an
information processing unit. Due to this, physical
analogs get obviously important sense. This relates,
for instance, to the notions of information quantity,
entropy, throughput of the computational device, and

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3556

some others. These notions have, first of all, a
physical sense. Namely from these positions with
application of necessary mathematical means, the
given paper is built. The postulates accepted here,
have both mathematical and physical nature, that is
why we do not claim that our approach contains a

pure mathematical proof of the P NP problem. But
mathematical substantiation of the approach is a part

of the common approach.

II. FORMALIZATION OF THE PREREQUISITES

Definition. A condition is understood as a formula
(formal expression) with variables. A condition can be
true or false with respect to its variable values.

Definition. A problem is understood as a non-
empty set of conditions. (An arbitrary) solution to a
problem is a set of values of its variables satisfying all
the explicitly stated conditions of the problem.

When solving a problem, a solver (Turing machine)
works with the problem conditions. A part of
conditions is stated explicitly, while the other part of
conditions is hidden in the problem formulation. Each
condition links the solution elements.

A condition is taken into consideration, provided
the solver makes one or more steps to test if it is true
or false, or treats it in the solution pocess.

A condition that does not logically follows from the
other conditions is called independent of those ones.

If the falsehood of a condition leads to the loss of
all solutions to the problem, then this condition is
called necessary.

Definition. Any necessary and sufficient set of
conditions of a problem A, which should be taken into
consideration by its solver, is called infological set of
this problem and designated by InfА

set
. The elements

of InfА
set

 are called the infs. In general, the problem
may have more than one infological set.

 If a truth value (true or false) of some condition
does not influence on the correctness of a problem
solution, then this condition is not included at least in
one infological set of the problem. If non-fulfillment of
a condition leads to loss of all problem solutions, then
this condition is included into each infological set or
can be inferred from it. Provided that a condition is
independent of the other ones, it should be explicitly
presented in infological set as we require of infs.

In what follows, we shall deal only with those
conditions (infs) which are necessary to find a solution
and independent.

We are interested only in the algorithms, which take
infs into consideration, that is, not ignore them, since
ignoring inf(s) means that a necessary and
independent condition is not considered, so its
fulfillment remains indefinite in the course of

computation. We shall build a problem not permitting
ignoring the infs.

In this paper, we deal with the problems formulated
with n >1 Boolean variables x1, x2, ... , xn (or integer-
valued variables taking values from the restricted
diapazons). A solution to the problem is represented
by some feasible (satisfying) interpretation (a set of x1,

x2, ... , xn values meeting the problem conditions stated
in its specification). This somewhat differs such type of
problems from YES-NO problems, however, not
essentially. A principal point consists in the following:
whether it is sufficient to find any one feasible solution
(satisfying interpretation), if it exists, or it is required to
find all feasible solutions.

Definition. A generating scheme represents a rule
(rules), pointing to how to compute each solution to
the problem.

Definition. The problems requiring to find any one
feasible (valid) solution (if exists) will be called ASP
(any solution problems), while the problems requiring
to find some generating scheme to find all solutions,
will be called TSP (total solution problems).

It is clear that if TSP has exponentially growing set
of feasible solutions then even their simple
enumeration requires an exponential time expenses.
However, the answer to TSP may be in some cases
represented as a set of generating rules
(substitutions) producing values for the problem
variables. To be clear, let us consider a problem with
integer-valued variables yi:

52y1 – 15y2 – 3y3 = 2,

y1  [–2, 2],

y2  [–3, 7],

y3  [–23, 2], all yi are integer.

One matter is to seek any one valid solution,
satisfying the above specification. Another matter is to
find some substitution system for yi enabling to get all
solutions with polynomial time for each one. In the
example, such a substitution system has the next
possible form:

x1 + x2 + x3 = 2,

 y1 = x1 + x2 – 2x3,

 y2 = 3x1 + 4x2 – 3x3,

 y3 = 2x1 – 3x2 – 20x3,

 xi  [0,1], all xi are integer.

Additionally, it is required that:

 R1) the least (the greatest) value of Li (Ri) for each
variable yi obviously is not less (greater) than the sum
of all negative (positive) coefficients in the
corresponding substitution for yi or 0, if there are no
such coefficients.

 R2) substitutions for хi are being looked for in a
strict order from the substitution system accordingly to

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3557

Gauss direct method of exclusions [13, vol.1, p.53] as
follows: х1 is expressed from the substitution for y1,

and х1 should have coefficient +1 or 1 in this
expression. Then expression for х1 is used instead of
х1 in the expressions for y2, …, yn. Then one takes
expression for y2 and gets substitution for х2 from it.

Again, х2 should have coefficient +1 or 1. The
obtained substitution for х2 is then used in expressions
for y3, …, yn. The process repeats by analogy for the
rest variables хi, i = 3, 4, …, n by replacing хi in yi+1, …,

yn. Each time хi should have coefficient either +1 or 1
in the expression for yi. The obtained substitutions
should contain integer coefficients only. Thus, in the
example we have

x1 = y1 – x2 + 2x3; x2 = –3y1 + y2 – 3x3;

 x3 = 17y1 – 5y2 – y3.

Clearly, from the obtained substitutions with the help
of the backward Gauss method one can find the
integer-valued substitutions for each хi with variables
yj (i, j = 1, …, n) only:

x1=89y1 – 26y2 – 5y3; x2= –54y1 + 16y2 + 3y3;

x3=17y1 – 5y2 – y3.

Because of the crucial importance of this problem, let

us denote 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, 𝒚 = {𝑦1, 𝑦2, … , 𝑦𝑛}, 𝒙 =
{𝑥1, 𝑥2, … , 𝑥𝑛}, 𝒅 = {𝑑𝑖|𝑑𝑖 = [𝐿𝑖 , 𝑅𝑖]} and use the

abbreviation SUBST(y, x, A, d, n, c, ) to denote its
specification with the following formulation. Let there
be given

 a1y1 + a2y2 +…+ anyn = c, (1)

 yi  [Li, Ri], (yi, ai, Li, Ri, c – all integer).

with the known ai, Li, Ri, c and unknown yi, i = 1,…, n.
Denote the length of the specification (1) by LGЗ.

Then it is asked, if for the given (fixed) polynomial 
there exists efficiently verifiable condition and the
system of substitutions of the type

x1 + x2 + … + xn = c,

 xi  [0, 1], (2)

 yi = bi1x1 + bi2x2 + … + binxn, i = 1, …, n,

 all bij are integer,
and

1) the sizes of the substitution matrix B = [bi,j] and the

sizes of the inverse matrix B-1

do not exceed (LGЗ);

2) R1, R2 are satisfied.

Definition [13]. The sizes of a rational number  =

p/q (p, q – are integer and coprime numbers, q 0),

rational vector с = (1,2,...,n) and rational matrix B =

[bij] are defined as follows

size() = 1+ log2(|p|+1) + log2(|q| + 1),

size(c) = n + size(1) +...+ size(n),

size(B) = m∙n + i,j size(bij),

where x is minimal integer value greater than x.

Theorem 1. If for conditions (1) there exists
system (2), then for each integer-valued set, satisfying
(1), there exists a unique integer-valued set, satisfying
(2), and vice versa.

Proof. Can be simply obtained from linear algebra
provided that matrix B = [bi,j] is not singular. The
requirement of integrality of the coefficients is fulfilled
by R1, R2.

Note 1. There may be more than one suitable
system (2) for (1) in general case.

Note 2. The number of satisfiable problems

SUBST(y, x, A, d, n, c, ) is infinite. Elementary
technique to generate them consists in the following.
Take each substitution yi = bi1x1 + bi2x2 + … + binxn
starting with i = 1 and set b11 = 1 with the other
coefficients b1j (j > 1) representing arbitrary integer
values. For i = 2, the coefficients b2j (j <>2) represents
arbitrary integer values, besides b22. The value of b22 is
defined in such a way that after performing
substitution for x1 from y1 = x1 + b12x2 + … + b1nxn

to

make b22 = 1 or b22 = 1 and so on.

Note 3. Requirement R2 is not peculiar. One can
restrict the substitutions for хi by yj (i, j = 1, …, n) only
by integer-valued ones, since it is possible to show
how an arbitrary integer-valued substitution matrix can
be reduced to the form meeting R2. For this aim, one
should apply the known technique on the basis of
Euclidean method for seeking the integer-valued
solutions of the linear algebraic equalities with multiple
variables and integer (rational) coefficients (see, for

instancce [14, p.p. 5253]). However, the technique,
outlined above, is further used to estimate the
memory expences for representation of the
coefficients of the substitution matrix B and its reverse
matrix B-1.

It is clear, that from system (2) the values of xi are
defined elementary and deliver the corresponding
solutions to the original problem. Nethertheless, it is
also clear that a solution may not exists, what

depends on the form of polynomial  and initial
formulation (1).

Theorem 2. SUBST(y, x, A, d, n, c, ) is
polynomially reducible to SATISFIABILITY problem.

Proof. There exists a polynomial complexity
method to test the condition

x1 + x2 + … + xn = c,

xi  [0, 1], i = 1, …, n.

There also exists a polynomial complexity method
to generate values y = (y1, y2, …, yn) for an arbitrary
guess for x = (x1, x2, ..., xn), satisfying the above
conditions, and using an arbitrary (a priori unknown)
substitution matrix B (with the coefficients also defined
as a guess). Also, there exists a polynomially efficient
method for testing the conditions

a1y1 + a2y2 +…+ anyn = c,

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3558

 yi  [Li, Ri], (yi, ai, Li, Ri, c – all integer).

Finally, there is a polynomially efficient algorithm to
get the substitutions for xi (limited only by the direct
forward Gaussian elimination method) to test the
fulfillment of R2.

It is necessary to note that by means of the given

polynomial , one is in position to efficiently define the

sizes of the Boolean representation of the integer-
valued coefficients of substitution matrix B and its
reverse matrix B-1. There remains to point to the fact
that maximal sizes of the intermediate coefficients
obtained by procedure for verifying the requiremeent

R2, are restricted by the value 4size(B) [13, vol. 1, p.
56] where size(B) defines the sizes of the substitution
matrix B.

The values of intermediate coefficients can be
found from the relationships pointed to in Gantmaher’s
book [15, p. 43] and are expressed through the minors
of the matrix B. If M is a maximal absolute value of a
coefficient in substitution matrix B, then the value of
each minor in B is not higher than n!∙Mn what requires
no more than n∙Log2(n∙M) bits for representation in
memory, i.e. is estimated as O(size(B)) with size(B) not

exceeding n2∙(LGЗ).

From the above considerations, one can conclude
that the technique used to reduce SUBST(y, x, A, d, n,

c, ) to SAT is polynomially efficient. It follows then
that if there not exists a polynomially efficient

algorithm for SUBST(y, x, A, d, n, c, ) with some fixed

 then SAT has no polynomial solution as well.

Next, we formulate two Postulates, which play
decisive role for the goals of this paper.

III. THE POSTULATES

POSTULATE 1.

Any TSP-problem requires to individually treat
(take into consideration) each independent and
necessary condition, spending for this at least one

step of the solver (Turing machine  TM) work. That
is, if the number of all independent and at the same
time necessary conditions is q then the number of
steps, TM should perform, is not less than q.

A natural explanation of POSTULATE 1 may be
given through the system of logical clauses (disjuncts)
D1, D2, ..., Dp forming a SAT problem. In fact, if some
clause depends on the others (that is, logically follows
from them) then that clause can be deleted (not taken
into consideration) from SAT without loss of every
solution what is necessary for TSP-problems. On the
contrary, if a clause does not depend on the others
than it cannot be deleted and should be taken into
account individually or in groups. However,
POSTULATE 1 does not admit the last opportunity.

Indeed, let r = p & q  p, with p and q mutually
independent (r is a group, consisting of the conditions

p and q). From the logical value (true/false) of q, one
cannot establish logical value of p without analyzing p
individually. By this, the value of the whole group r
cannot be established without knowing logical values
of the conditions p and q from r.

Independence has a fundamental nature. If some
condition C is necessary and does not depends on the
other conditions, then truth or falsity of those last says
nothing about truth or falsity of C. Hence, C should be
taken into consideration by necessity. In a standard
way, it is adopted that formula C does not depend on

the formulas 1, 2,..., k, provided that there exists

some interpretation I, such that 1(I) & 2(I) &...& k(I)

= true, but C(I) = false.

This definition of independence should be
somewhat modified for the paper needs. Let I1, I2,..., In
be particular interpretations and I = I1I2... In stand for

their concatenation. Let 1(I) = f(I1), 2(I) = f(I2),...,

n-1(I) = f(In-1), n(I) = f(In), and there exists

interpretation I = I1I2...In, in which 1(I), 2(I),...,

n-1(I) all are true, and n(I) is false. Hence, n does

not depend on 1(I), 2(I), ... , n-1(I).

This formulation of independence will be further
referred to as independence in private interpretations.
Evidently, independence in private interpretations is a
particular case of the independence defined in
standard way.

Finally, a condition C is a necessary one, provided,
that its failure (falsity) leads to the loss of all solutions.

Note that an independent condition is not
obligatory a necessary one. A necessary condition
may be dependent. The conditions explicitly
formulated in a problem specification are necessary
ones.

We shall use the next

Lemma. Let &F be a compatible system of

logical formulas. Then from &F  H follows & H

 F ( denotes logical negation).

Proof folows from equivalence xy  x  y.

Definition of reduction of a problem А to problem В
can be found in [1].

Denote by TH the throughput of TM; by N – the
number of steps it performs in order to rich the final
state; by I – the number of the infs, TM takes into
consideration during its work. Let TH = I / N.

POSTULATE 2.

For each totally finite TMA, and each common problem
solved by TMA, the following relationship is true

 THA  cA  , (3)

where cA stands for some fixed constant value
related to this TMA.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3559

From (3) one concludes that each physical data
processing device cannot process an infinitely many
infs (bits of information) per one step
(cycle/transmission) of its work. This fundamental
principle is asserted, in particular, in [16].

Let us briefly dwell on a possible counter-argument
through the well-known acceleration theorem of M.
Blum [17]. This theorem asserts that there exist
general recursive functions f with values from {0,1}

and such that for each TM Zi, calculating f(n) for i(n)
steps, there exists another TM Zj, which calculates

f(n) significantly faster for j(n) steps with i(n) >

2j(n). Moreover, there is an infinite sequence  of TMs,
calculating f, in which for every neighbor pair of Turing

machines Zs и Zs+1 one has inequality s(n) > 2s+1(n),
correct for almost all n.

From Blum’s theorem, however, it does not follow
existence of TM with unlimited throughput. Even if one
accepts that TMs, computing the same function,
process the equal quantity of information, the Blum’s
theorem only states for each pair Zs и Zs+1 availability
of the fixed number m defined for this pair of TMs,

such that for almost each n > m one has s(n) > 2s+1(n).
This means that starting from the value m, time
expences of Zs grows significantly faster than time
expences of Zs+1. The Blum’s acceleration theorem
does not impose restrictions on the upper boundary of

i(n) for all indices i from . Hence, for each fixed n,
the fastest computation of f(n), say on Zr, may require
an arbitrary many number of steps, while for l > n the
fastest computation of f(l) is performed by another

TM, say, Zy with very great value of y(l) as well.

We have reach the point in our reasoning where it
is required to introduce some consistent TSP problem
A with exponentially growing sizes of InfА

set
 for linearly

grow of the variables number n. It requires of us to
show that minimum Conjunctive Normal Form (CNF) of
this problem grows exponentially in sizes provided,
that the number of variables grows linearly.
Consequently, this problem cannot be solved for
polynomial time whichever solver is used, provided,
that all problem infs are taken into consideration and
each inf is considered individually, not in groups. The
reader evidently has guessed that we intend to use

SUBST(y, x, A, d, n, c, ).

IV. THE INFS

 Some NP-complete problems use the condition
formally represented as

 a1x1 + a2x2 +... + anxn = c, (4)

where ai , c, xi are integer non-negative numbers

and xi {0, 1}. In particular, some private case of (4) is
treated in a Minimum-Size Covering Problem (MSCP)
of a 0,1-matrix. SAT can be reduced to (4). Let us call
(4) a Container Packing Problem (CPP). One can see
that CPP is an NP-complete problem. Now ask, if
CPP can be polynomially reduced to equivalent SAT

provided, that both problems are specified with the
same set of variables? The answer is delivered by

Theorem 3. It is impossible to reduce CPP(x1, x2,

…, xn) to equivalent SAT(x1, x2, …, xn) with the sizes of
SAT(x1, x2, …, xn) restricted by some polynomial of n.

Proof. Consider the equation

 x1 + x2 + ... + xn = (n +1)/2 (5)

with odd n.

Let us build CNF for (5) in order to demonstrate
that its sizes grow exponentially with linear growth of
n. It is easy to comppose the disjunctive normal for
(DNF) for (5). To make the proof clear, consider the
equation

 x1 + x2 + x3 + x4 + x5 = 3 (6)

with DNF

 x1x2 x3x4x5  x1x2x3x4x5  ...  x1x2x3x4x5. (7)

Let a conjunction Ki =(x1)
1(x2)

2 ... (xn)
n deliver a

solution to (5) ((x) = x, if  = 1 and х, if  = 0). Call

the set Ki*= (x1)
1-1(x2)

1-2 ... (xn)
1-n conjugate to set Ki.

Disjunction (clause) Di (Di*), associated with Ki (Ki*) is
defined as follows

 Di = Ki = (x1)
1-1  (x2)

1-2 ...  (xn)
1-n, (8a)

 Di* = Ki* = (x1)
1  (x2)

2 ...  (xn)
n. (8b)

They say that D is deducible from D, if D  D.

A clause Dj is a simple implicit clause with respect
to logical formula F(x1, x2 ..., xn) if

 (i) F(x1, x2 ..., xn)  Dj,

(ii)  Dk ((Dk  Dj) & (F(x1 ,x2 ..., xn)  Dk))

 ( denotes implication).

The notion of a resolvent is standard [18]. Notice
here that resolution principle by J. Robinson is a
universal inference rule.

A set Z of clauses is called closed if each resolvent
(logical consequence), deducible from any subset of
Z, belongs to Z.

A subset П of the set of clauses Z is called a
covering set of Z provided, that each clause from Z
either belongs to П or can be deduced from П. A
covering set Пmin is a minimal if it consists of the
minimum number of clauses among all sets, covering
Z.

Each subset of the independent clauses of the set
R is called a kernel of R. Obviously, each Пmin is a
kernel. The opposite, however, may be false.

Return to (6). It is clear that conjunction

 К = x1x2 x3x4x5

belongs to DNF of (6) and defines the associated
clause (8a)

 D = x1  x2  x3  x4  x5.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3560

D is not deducible from the set of clauses SAT,
equivalent to (6) (thereafter denoted as D-SAT). This
means, that there exists an interpretation I in which

each clause from D-SAT is true, while D is false, and
this interpretation is x1 = x2 = x3 = ’1’; x4 = x5 = ’0’

delivering true value to К.

Further, no one clause D, D  D can be

deduced from D-SAT, e.g. x1  x2, or x4  x5, or x1

cannot be deduced from D-SAT. It is also clear that D-
SAT is not satisfied with each set conjugate to Ki from
DNF representation of (5), (6). For instance, D-SAT is

not satisfied with the set (К)* = x1x2x3x4x5,

determining associated clause (D)* = x1  x2  x3 

x4  x5.

Consider clauses D and (D)*. From our
considerations follows that the clauses

 1 = x4  x5, 2 = x3  x5, 3 = x2  x3  x4

and the others of that kind are not deducible from
D-SAT, that is, do not belong to the clauses of D-SAT
and cannot be deduced from them by means of the
existing inference rules, since they are refuted in
some intrepretation satisfying (6). Let us now find
such an arbitrary minimum-size subset of the clause

(D)* which is deducible from D-SAT by virtue of the
inference rules (in particular, by the resolution rules).
The sizes of a clause (its subset) define the number of

literals in it. So, d^ = x1  x4  x5 represents one such

a subset (d^  (D)*). One can easily convince himself
(herself) that each interpretation, satisfying (6),
satisfies d^ as well. From this, and well-known K.
Gedel’s theorem about equivalency of syntactic and
semantic deducibility [8], one concludes that d^ either
belongs to D-SAT or can be inferred from D-SAT with
inference rules. We are dealing with D-SAT with
minimum possible sizes, that is, coinciding with a Пmin
for (6).

It is clear that any proper subset of d^ cannot be

deduced from D-SAT. For instance, x1  x4 is not
deducible from D-SAT since it belongs to the clause

D = x1  x2  x3  x4  x5 not deducible from D-
SAT as was explained above. Let us notice that no
one clause with a single or two literals is included in
D-SAT or deduced from D-SAT as it is a proper
subset of some broader clause that is not derived
from D-SAT. Next, there are no clauses (nor they can
be deduced) in D-SAT with 3 letters like those

 xi  xj  xk, xi  xj  xk, xi  xj  xk

by the same reason: they represent a proper part
of some underivable clauses. Hence, in D-SAT may

be included the clauses of the form xi  xj  xk or some
subset of more broader clauses, from which logically

follows xi  xj  xk. From this follows that d^ may be

deduced in the best case from a group of clauses min
with at least two (deducible) clauses, e.g.

 x1  x2  x4  x5,

 min =

 x1  x2  x4  x5.

Each clause from min provided, that it belongs to
D-SAT, can be replaced by d^, from which it follows.
Consequently, since our goal is to refute including d^

= x1  x4  x5 in D-SAT, it is necessary to recognize that

both clauses x1  x2  x4  x5 and x1  x2  x4  x5

can be deduced without use of d^. Consider the first of
them

d(A) = x1  x2  x4  x5.

Clearly, any subclause of d(A) with fewer letters
does not belong to D-SAT and cannot be deduced

from it, excluding d^ (but we have supposed that d^ 

D-SAT). There is a possibility (among the others!) to
deduce d(A) from another two deducible from D-SAT
clauses:

 d(B) = x1  x2  x4  x5  x3

 and d(C) = x1  x2  x4  x5 x3.

Again, no one subclause of d(C) can be deduced

from D-SAT, excluding x1  x4  x5. So, consider this
second clause d(C). Any proper its subclause is
underivable and does not belong to D-SAT, excluding

x1  x4  x5. Moreover, d(C) is not deduced from any
broader clauses as there are no such clauses
anymore. So, d(C) cannot be deduced with the help of
resolution inference rules. There remains a possibility

to deduce d(C) with the help of some clause d* Пmin
with lesser sizes. Clearly, d* cannot be a proper part
of d(C) as we accepted. Now, represent Пmin = F&d*

where  and d* are mutually independant (d* does

not follow from F). Then F&d* d(C). By Lemma,

F &d(C)  d*. Replace d(C) by x1x2x4x5x3.
Clearly,

 F & d(C) = x1 x2 x4 x5 x3, (9)

and

 x1 x2 x4 x5 x3  d*. (10)

(The other possibility is F&d(C) = □ (□ denotes

false). From this, F  d(C), what contradicts to the fact
that to deduce d(C), one needs to use d*.)

Again, d* stands for some part of the conjunction

x1x2x4x5x3. In these terms, d* stands for some part

of the clause d(C) = x1  x2  x4  x5 x3. As we now
know, no proper part of d(C) is valid besides that one

containing d^ = x1  x4  x5. However, in this case, d*
may be replaced by d^ with preserving the sizes of
Пmin.

This reasoning, remains valid with respect to any

clause of the form xi  xj  xk with the pairwise different
i, j, k.

We can generalize our considerations to an
arbitrary case (5). Consider a minimum-size positive
deducible clause

 d(D) = xi1  xi2  ...  xi(n+1)/2.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3561

Then it may be deduced from the next pair of the
clauses

d(E) = xi1  xi2  ... xi(n+1)/2  xk,

d(F) = xi1  xi2  ...  xi(n+1)/2 xk.

For the second clause d(F), one cannot use fewer
number of positive letters since it is refuted in some
satisfying interpretation for the SAT (5). Let’s denote
this SAT as G-SAT. Consider this second clause d(F)

and notice that any its proper subclause does not
belong to G-SAT nor is deduced from G-SAT, besides
d(D). Hence, if this clause is deducible from the other
clauses, then it should of course, be deducible from
the pair of clauses

d(E) = xi1  xi2  ... xi(n+1)/2  xk  xr,

d(F) = xi1  xi2  ...  xi(n+1)/2 xk xr .

Each of the above clauses is either deducible from
G-SAT or belongs to G-SAT. Again, any proper
subclause of d(F) is not deducible from G-SAT nor
belongs to it, excluding d(D). Hence, as we excluded

belonging xi1  xi2  ...  xi(n+1)/2 to G-SAT, then either
d(F)

 is deduced from the other clauses of the G-SAT, or
belongs to the G-SAT. In the last case, this clause can
be replaced by d(D). In the first case, one should
consider the next pair of the deducible clauses
resolving in d(F). One of the clauses of that pair would

be the clause xi1  xi2  ...  xi(n+1)/2 xk xr  xt.
This process can be continued by analogy and stops
after all G-SAT variables are used. Then, there
remains a possibility to replace one of the remaining
clauses of the form

 d(G) = xi1  xi2  ...  xi(n+1)/2 x i(n+1)/2+1 ...  x n

by xi1  xi2  ...  xi(n+1)/2. Clearly, d(G) cannot be
deduced from any pair of clauses provided, that none
of them contains the subclause d(D) and, therefore,
may be replaced by d(G) from which it follows. More
strictly,

 Пmin =_& d*_ where _ and d*_ are mutually

independant (d*_ does not follow from _ and has

sizes smaller than the sizes of d(G)) and _& d*_

d(G). As was shown earlier, in these terms d*_ should
contain d(D) otherwise it fails in some valid
interpretation for G-SAT.

There remains to make a final step in the proof. In
each conjugate set Ki* one can define a unique
clause di^ (d(D)) (like that one considered above, and
consisting with positive letters only (di^ is written with
the positive letters from the representation of Di* =

Ki*). Clearly, all such clauses di^ (d(D)) form a kernel
and belong (as we have shown) to some minimum-
size covering set Пmin of G-SAT for all possible cases
of di^ (d(D)). The number of such clauses di^ (d(D)) is
Сn

(n+1)/2 = О(2n/2). By this, one concludes that minimum-
size CNF for (5) contains exponentially growing
number of clauses with respect to the number of
variables n.

V. THE SUBST(Y, X, A, D, N, C, ) PROBLEM

 Consider a system of substitutions

 уi = аi + bi1x1 + bi2x2 +...+ binxn , i =1, n, (11)

with integer ai, bij, and binary xi. The main

requirement to the substitutions (11) is to provide the
uniquness of the transformation, or in the other words,
to ensure that each set x* = <x*1, x*2, ..., x*n> is
mapped to unique set y* = < y*1, y*2 ,... y*n > (the
opposite is obvious). The said requirement is fulfilled
by nondegeneracy of the transformation matrix B =

[bij].
 From (11),

 y = B-1 ∙(x  a). (12)

Theorem 4 [13].
1. If the system of rational equations (11) is

consistent then it has a solution y with the sizes

restricted by some polynomial 1 of the sizes of B-1

and (x  a).
2. The inverse matrix B-1 has the sizes, restricted

by some polynomial 2 of the matrix B sizes.
Notice that we are interested in the values of yi

which define the values of хi  {0,1}. For convinience,
let us set b = 0. From this, the sizes of y are restricted

by some polynomial 3(size(B)) =1 (2(size(B))).
One can see that for m = n and some fixed

constant k, size(B)  O(k∙n2∙(maxi,j size(bij))). So, there
remains to provide that the value of size(bij) grows not
faster than some fixed polynomial. However, this
requirement is trivial as in selecting the coefficients of
the matrix B one should preserve only its

nodegeneracy (det B 0).

We have reached the final point. Accordingly to

SUBST(y, x, A, d, n, c, ), it is necessary to build a
function f (generated by the system of substitutions)
mapping each satisfying interpretation I(x*) (x-values)
satisfying system (2), to the unique interpretation I(y*)
(y-values) satisfying system (1) or vice versa. It was
demonstrated that the number of feasible
interpretations for the system (2) grows exponentially
with linear growth of the number of variables n. The

reverse function f 1 can be found (in the form of a
reverse matrix B-1) provided, that the matrix B of
substitutions is nondegenerate. Therefore, if to
consider each pair of interpretations (x*, y*) satisfying
to (1, 2), separately from the other pairs (x, y), then it
is necessary to consider exponentially growing
number of all pairs (x, y), and by POSTULATE 2 to
spend exponentially growing time to solve SUBST(y,

x, A, d, n, c, ) in general. However, let us try to refute
this conclusion and suppose that after establishing
some part of all pairs (x, y), satisfying (1, 2), the
remaining pairs of interpretations may be not
considered and, therefore, be ignored by the solver.
Again, to make our reasoning clearer, consider an
illustration. Let the generating rule be as before

 x1+x2+x3+x4+x5 = 3. (13)

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3562

The next table shows all feasible pairs of
interpretations, satisfying the systems (1, 2).

Table 1. The pairs of iterpretations deliverig the solutions to the

 systems (1, 2)

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

0 0 1 1 1 y11 y21 y31 y41 y51

0 1 0 1 1 y12 y22 y32 y42 y52

0 1 1 0 1 y13 y23 y33 y43 y53

0 1 1 1 0 y14 y24 y34 y44 y54

1 0 0 1 1 y15 y25 y35 y45 y55

...

1 1 1 0 0 y1,0 y2,10 y3,10 y4,10 y5,10

We assume that the rows of the table 1 are
arranged in descending strong order of values in the
column y1. This assumption does not violate the
strength of the results obtained. With the help of the
rule R2, it is possible to generate an infinite number of

the individual problems SUBST(y, x, A, d, n, c, )
satisfying this assumption. For this, one should use
the first substitution

 y1 = b11x1 + b12x2 + … + b1nxn (14)

 for y1 with the coefficient b11 = 1 and each subsequent

coefficient b1j > k < j b1k. It may be proved by induction
on the number of variables in the substitution (14) that
in this case the values of y1 would be arranged in
desceinding order (leave this to the reader). Consider,
for example, the fifth row in the table 1

1 0 0 1 1 y15 y25 y35 y45 y55

Suppose that it depends on the previous rows in
the table 1. This means, that the values y15, y25, y35, y45,

y55 automatically fall into ranges [Li, Ri] provided, that
the previous rows <y1i, y2i, y3i, y4i, y5i> have fallen into
ranges [Li, Ri]. However, before solving any individual

problem SUBST(y, x, A, d, n, c, ) (including the
considered one) this fact is unknown, and there exist

two types of SUBST(y, x, A, d, n, c, ) such that y15
falls into [L1, R1] for the first type, and does not fall
into [L1, R1] for the second type of SUBST(y, x, A, d, n,

c, ). Indeed, in comparison with the previous row
<y14, y24, y34, y44, y54> the following relations take place

y15 < y14, y14 [L1, R1]. Then, by increasing the value of

L1 one can provide that y11, y12, y13, y14  [L1, R1], but

y15 [L1, R1]. This means that the row <y15, y25, y35, y45,

y55> should be taken into consideration by the solver
even in the case that the previous rows satisfied the
corresponding ranges [Li, Ri]. Note that
lexicographical descending order of the rows with
interpretations can be obtained by a simple indeces
mixing in variables x1, x2, x3, x4, x5 as they are mutually
independent.

The situation, we have described, is applicable to
any part of the table with the interpretations (including
the entire table) and means that each row of the table
would be considered separately by virtue of

POSTULATE 1 as a formula independent in particular
interpretations from the other ones. Indeed, one can
define the next formulas

1(I) = h(SUBST(y, x, A, d, n, c, ), I1), 2(I) =

h(SUBST(y, x, A, d, n, c, ), I2), ..., n(I) = h(SUBST(y,

x, A, d, n, c, ), In) where h(SUBST(y, x, A, d, n, c, ), Ii)
is true for the i-th row of the interpretation table 1 with
Ii =(xi, yi) (xi, yi represent the corresponding x-set and
y-set in the i-th row) if and only if A(yi)

T = c and each
member of yi falls into the corresponding range di from

d we have showed above, 1, ... , n are independent
in private case. By POSTULATE 1, each of these
functions should be considered by the solver
separately from the others.

This last remark completes the natural proof for

P NP.

VI. CONCLUSION

The proof of РNP given in the article is not purely
mathematical, since it uses, in any case, one purely
physical postulate about the limited capacity of the
Turing machine.

An obvious correspondence to the postulate of the
theory of relativity restricting the speed of light can be
found if we draw an analogy with the emission of a
photon of light and the operation of transition in a
Turing machine (in this case, the speed of light is a
physical analogue of the speed of information
processing by a Turing machine).

The postulates we have introduced characterize
the understanding of complexity that is intuitively used
by the algorithms developers. Therefore, we are not
talking about a "universal" mathematical proof of the

РNP formula, but about a proof within the framework
of the accepted postulates.

REFERENCES

[1] Garey M., Johnson D. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., New York,
1979. – 340p.

 [2] Fortnow L. The Status of the P versus NP
Problem. Communications of the ACM. 2009, 52(9).

p.p.7886.

[3] Baker Th., Gill J., Solovay R. Relativization of
the P=?NP question. SIAM J. of Computing. 1975.

4(4), p.p. 431 442.

[4] Razborov A. A. On the method of
approximation. In Proceedings of the 21

st
 ACM

Symposium on the theory of Computing. New York,

1989, p.p. 167176.

[5] Razborov A. A., Rudich S. Natural proofs.
Journal of Computer and System Sciences. 1997.

55(1), p.p.24  35.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 6 Issue 10, October - 2020

www.jmess.org

JMESSP13420688 3563

[6] Cook S. The P versus NP problem. Clay
Mathematics Institute. Retrieved 18 October 2006.
12p.

[7] Melkebeek van D. A survey of lower bounds for
satisfiability and related problems. Foundation and
trends in theoretical computer science. 2007, vol. 2,

p.p. 197 303.

[8] Diaby М. The Traveling Salesman Problem: A
Linear Programming Formulation. WSEAS
Transactions on Mathematics. Issue 6. vol. 6. June

2007, p.p. 745 754.

[9] Craig Alan Feinstein. An elegant argument that

P != NP. Progress in Physics. 2011, vol. 2, p.p. 30 
31

[10] Jorma Jormakka. On the existence of
polynomial-time algorithms to the subset sum
problem. arXiv e-prints:
https://arxiv.org/abs/0809.4935, 2008.

[11] https://www.win.tue.nl/~gwoegi/P-versus-
NP.htm.

[12] Aaronson S. NP-complete problems and
physical reality / ACM SIGACT News. 2005, vol.

36(1), p.p. 3052.

[13] Schrijver A. Theory of Linear and Integer
Programming. John Wiley and Sons. N.Y., 1986.

[14] Sushkewich A. K. Number Theory. Elementary
Course. Kharkov Univ. Press. (Ukraine, USSR). 1954
(In Russian) [Sushkewich A.R. Teoria chisel.
Elementarny kurs. Kharkow Universitet, 1954].

[15] Gantmaher F. R. Theory of Matrices. Moscow
Science. The 3-rd Edition. 1967 (in Russian)
[Gantmaher F. Teoria Matric. Moskwa. Nauka, 1967.

Izdanie 3.  576s]

 [16] Harmuth H. F. Information Theory Applied to
Space-Time Physics. The Catholic univ. Of America,

Washington, DC. 1989. 350p.

[17] Blum M. A machine-independent theory of the
complexity of recursive functions. Journal of the
Association for Computing Machinery. 14,№ 2 (1967),

322336.

[18] Chang C-L., Lee R. Symbolic Logic
and mechanical Theorem Proving. Academic Press.,
New York., 1973. –360p.

http://www.jmess.org/

