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Introduction 

In the oil and gas industry, elastic-fixed sealant 
element (rubber) is often used in gas well packer 
equipment for hermetic seal well, so the research of 
the dynamic behavior of this element represents 
practical interest. 

Keywords—the circular sealing element, the 
dynamic behavior, hermetic seal, sealant element 

Statement of a question. 

Plug valves, which are the main components of the 
fountain fittings, are realized by sealing between 
metal-metal surfaces in straight valves, adjustable 
throttles and their flange connections. Since the main 
unit of the Christmas tree is its connecting structures, 
their efficiency will be included in the criterion for the 
effectiveness of the Christmas tree. When selecting 
parts and assemblies of connecting structures in 
accordance with the design, operating parameters 
and the required properties of the socket into which 
they are installed, its performance can be increased 
many times over. The goal is to create physical 
models of joints of connecting structures in 
accordance with the required property. One of the 
important tasks here is to ensure the absence of 
"leaks" in the sealed joint zone in accordance with the 
requirements for the nodes, ensuring operational 
reliability and durability[4,5,6,7,8]. 

 The main task of the seal between the required 
contact surfaces is to determine the criteria, which is 
the selection of the parameters of the sealing parts 
that perform the required technical functions. 

The most general case of elastic fastening can be 
reflected with help of boundary conditions: 

  

𝐹 − 𝑀 = 𝛼2𝑊 + 𝛼22
𝜕𝑊

𝜕𝑟
 (1) 

  

where: F and M are accordingly the shearing force 
and the bending moment at the edge of the sealing 
element; 

𝑊 and 
𝜕𝑊

𝜕𝑟
- deflection (deformation) and angle of 

the edge rotation; 

𝛼𝑖𝑗 - coefficient of fastening elasticity. 

In the axisymmetric case, which we will research 
for F2 great concreteness of the obtained results, we 
have [1]: 

 𝐹 = −𝐷
𝜕

𝜕𝑟
∙ ∇2𝑊 𝑀 = −𝐷(

𝜕2

𝜕𝑟2 +
ᵞ

𝑟
∙

𝜕

𝜕𝑟
) (2) 

the equation of the sealing element motion under 

the action of an external pressure (𝑃0 ∙ 𝑙−𝑖𝜔𝑡) in the 
form [1]: 

 𝐷∇2∇2 ∙ 𝑊 − 𝑃ℎ𝜔2𝑤 = 𝑃0 (3) 

  

Methods for solving the stated problem 

We`ll write in the sum form of a particular solution 
of the inhomogeneous equation and the general 
solution of the homogeneous equation [2]: 

 𝑊 = −
𝑃0

𝜌ℎ𝜔2𝑊
= 𝑃0 (4) 

where k is the wavenumber of bending waves, 
defined by 

 𝑘 = √𝜌ℎ𝜔24
/𝐷 (5) 

Taking into account that the Bessel functions 
𝐽0(𝑘𝑟) and I𝐼0(𝑘𝑟) are the eigenfunctions of the 
operators 

 (∇𝑟
2 + 𝑘2) ∙ 𝐽0(𝑘𝑟) =) (∇2 − 𝑘2) ∙ 𝐼0(𝑘𝑟) = 0 (6) 

  

We write the values of F and M b in the form: 

 𝐹 = 𝐴𝐷𝑘3𝐼0(𝑘𝑟) − 𝐵𝐷𝑘3(𝐼0(𝑘𝑟)  

 𝑀 = 𝐷2𝑘2𝐴 [𝐽0(𝑘𝑟) +
1−ᵞ

𝑘𝑟
∙ 𝐽0(𝑘𝑟)] + (7) 

 𝐷𝑘2𝐵 [−𝐼0(𝑘𝑟) +
1 − ᵞ

𝑘𝑟
∙ 𝐽(𝑘𝑟)] 

Using the boundary conditions (1), we obtain the 
following system of algebraic equation: 

 𝐴{𝛼11𝐽0(𝑘𝑅) + 𝐼0(𝑘𝑅)[𝐷𝑘3 + 𝛼12𝑘]} +  

 +𝐵𝐴{𝛼11𝐽0(𝑘𝑅) + 𝐼(𝑘𝑅)[−𝐷𝑘3 + 𝛼12𝑘]} =
𝑃0𝛼11

𝜌ℎ𝜔2  

 𝐴 {[𝛼21 + 𝐷𝑘2] + 𝐼0(𝑘𝑅) [𝛼22𝑘 + 𝐷𝑘2 +
1−ᵞ

𝐾𝑅
]} +  
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 +𝐵 {𝐽0(𝑘𝑅)[𝛼21 − 𝐷𝑘2] + 𝐼(𝐾𝑅) [𝛼22𝑘 + 𝐷𝑘2
(1 − ᵞ)

𝐾𝑅
]}

=
𝑃0𝛼21

𝜌ℎ𝜔2 
 (8) 

Thus, the solution of the problem is obtained in 
closed form without any expansions in eigenfunctions 
: 

 𝑊(𝑟, 𝑡) =(
𝑃0𝑒−𝑖𝑎𝑡

𝜌ℎ𝜔2 ∙ {−1 +
∆1𝐽0(𝑘𝑟)+∆2İ0(𝑘𝑟)

∆
} 

 𝑊(𝑟, 𝑡) =(
𝑃0𝑒−𝑖𝑎𝑡

𝜌ℎ𝜔2 ∙ {−1 +
∆1𝐽0(𝑘𝑟)+∆2İ0(𝑘𝑟)

∆
} 

where 

 

∆1= |

 𝛼11{𝛼11𝐽0(𝑘𝑅) + İ0(𝑘𝑅[𝐷𝑘3 + 𝛼21𝑘]}

𝛼22 {𝐽0(𝐾𝑅)[𝛼21 − 𝐷𝑘2] + İ(𝑘𝑅) [𝛼22𝑘 + 𝐷𝑘2 1−ᵞ

𝑘𝑅
]}

| 

;  

 

∆2=

|
{𝛼11𝐽0(𝑘𝑅)[𝐷𝑘3 + 𝛼21𝑘]} 𝛼11

{[𝛼21 + 𝐷𝑘2] − 𝐽0(𝑘𝑅) + İ0𝑘𝑅 [𝛼22𝑘 + 𝐷𝑘2 1−ᵞ

𝐾𝑅
]} 𝛼21

| (9

) 

∆

=

|

|

𝛼11𝐽𝑜(𝑘𝑅) + [−𝐷𝑘2 + 𝛼12𝑘]İ0(𝑘𝑅)

𝛼11𝐽𝑜(𝑘𝑅) + [−𝐷𝑘2 + 𝛼12𝑘]𝐼0(𝑘𝑅)

{[𝛼21 + 𝐷𝑘2]𝐽0(𝑘𝑅) + [𝛼22𝑘 + 𝐷𝑘2
(1 − ᵞ)

𝑘𝑅
] İ0(𝑘𝑅)}

{[𝛼21 − 𝐷𝑘2]𝐽𝑜(𝑘𝑅) + [𝛼21𝑘 + 𝐷𝑘2
1 − ᵞ

𝑘𝑅
] İ0(𝑘𝑅)}

|

|

 

Now we have the opportunity to study various 
special cases of elastic fastening of the circular 
sealing element edge, which are most often found in 
engineering practice  

 𝛼12 = 𝛼21 = 0 ; 𝛼22 = ∞ ; 0 < 𝛼11 < ∞ (10) 

It is easy to see that the compliance of the support 
in this case is connected with the shearing forces. 
Another possible case of elastic pinching, which we 
will call the second type of fixation, is expressed by 
the conditions: 

 𝛼12 = 𝛼21 = 0; 𝛼11 = ∞; 0 < 𝛼22 < ∞ (11)  

  

In this case, the compliance of the supports is 
related to the bending moment. The stiffness 
coefficients of the sealing element can be expressed 
through their mechanical and geometric parameters in 
a known manner [3]: 

First we consider an elastic fastening of the first 

kind. For 𝜎12 = 𝛼21 = 0, 𝛼22 = ∞ the solution can be 
represented in the form 

 𝑊(𝑟, 𝑡) =

𝑃0𝑒−𝑖𝜔𝑡

𝜌ℎ𝜔2 ∙ {−1 +
İ0(𝑘𝑅)𝐽0(𝑘𝑅)−İ0(𝑘𝑅)𝐽0(𝑘𝑅)

İ0(𝑘𝑅)𝐽0(𝑘𝑅)−İ0(𝑘𝑅)𝐽0(𝑘𝑅)+
2𝐷𝑘2

𝛼11
∙İ0𝐽0

} (12) 

 𝑊(𝑟, 𝑡) =

𝑃0𝑒−𝑖𝜔𝑡

𝜌ℎ𝜔2 ∙ {−1 +
İ0(𝑘𝑅)𝐽0(𝑘𝑅)−İ0(𝑘𝑅)𝐽0(𝑘𝑅)

İ0(𝑘𝑅)𝐽0(𝑘𝑅)−İ0(𝑘𝑅)𝐽0(𝑘𝑅)+
2𝐷𝑘2

𝛼11
∙İ0𝐽0

} (12) 

For strength calculations the value of the reaction 
force, arising in elastic fastening introduces a special 
interest. In accordance with the boundary conditions, 
this quantity is 

𝐹 = −𝛼11𝑊(𝑅, 𝑡) (13) 

After the transformations, we obtain 

 𝐹 = −
𝑃0𝛼11𝑒−𝑖𝜔𝑡

𝜌ℎ𝜔2 {−1 +

𝐽0(𝑘𝑅)

İ0(𝑘𝑅)
−

𝐽0(𝑘𝑅)

İ0(𝑘𝑅)

[
𝐽0(𝑘𝑅)

İ0(𝑘𝑅)
−

𝐽0(𝑘𝑅)

İ0(𝑘𝑅)
+

2𝐷𝑘3

𝛼11
]
} (14) 

  

This ratio can be written in a dimensionless form 

 𝑓(𝛺) =
𝐸1𝐷

𝛽[
İ0(𝛺)

𝐽0(𝛺)
−

İ0(𝛺)

𝐽0(𝛺)
]𝛺+𝛺4

 (15) 

where 𝑓(𝛺) =
𝐸𝐷

𝑃0𝛼11𝑅4 is a dimensionless quantity 

characterizing the strength of the reactions; 

�=kR - dimensionless excitation frequency; 

𝛽 =
𝑑11𝑅3

2𝐷
 - dimensionless stiffness parameter of 

the support. 

Analysis of results 

A particular dependence of the quantity modulus 
f(�) gives a resonance curve; reverse value f(�) has a 
transmitting character in strength. We explore in detail 
the frequency dependence of f(�) for various 
parameters characterizing their fixation rigidity. An 
important feature of this type of boundary conditions is 
the appearance of a low-frequency resonance, 
caused by the compliance of the support. However, as 
the rigidity of the fastening increases, this resonant 

frequency increases, reaching, at 𝛽 → ∞ the lower 
frequency of the clamped disk. The physical 
appearance of low-frequency resonance can be 
explained by the existence of a special oscillation 
shape at which the deformations of the disk are small, 
and it oscillates almost like a rigid mass, and the 
elasticity of the system is due to the compliance of the 
sealing element. If the support is sufficiently soft, then 
for low frequencies the expansion 

 
𝐽0(𝛺)

İ0(𝛺)
−

𝐽0(𝛺)

İ0(𝛺)
= −

2

𝛺
−

2

𝛺
 =−

4

𝛺
 (16) 

This implies that the dimensional record of the 
reaction force will have the form 

 𝐹 = −
2𝑃0𝑅𝑒−𝑡𝜔𝑡

2𝜌ℎ𝑅𝜔2

𝛼11

 (17) 

This formula corresponds to the elastic oscillations 
of a solid disk on a sufficiently compliant spring, which 
is confirmed by previous arguments. Finally, we`ll 
analyze the overall frequency characteristics of the 
system. It is convenient to consider the case of small 
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𝛽(𝛽~1) and the case of large (𝛽 ≫ 1) those the case 
of small and high stiffness of the seal. It is interesting 
to note here that the resonances alternate with the 
anti-resonances whose position does not depend on 

the rigidity parameter 𝛽. Indeed, the denominator 
turns to infinity only at frequency values, when 

İ0(Ω) = 0 ; Ω = 𝜇𝑘; 𝑘 = 1,2,3. 

At these values, the frequencies f (Ω)=0 and are 
anti-resonances. The values of the dimensionless 
frequency 𝜇𝐾, at which F = 0 are given below  

  

Table 1-The value of К and 𝜇𝐾 

k .1 2 3 4 5 6 7 8 9 

𝜇𝑘 .3,832 7,016 10,17 13,32 16,47 19,61 22,76 25,90 29,05 

 

Resonances of the system are determined by a 
complex transcendental equation 

 
𝐽0(𝛺)

İ0(𝛺)
−

𝐽0(𝛺)

İ0(𝛺)
= −

Ω2

𝛽
 (18) 

The solution of this equation depends essentially 

on the parameter � 𝛽. If 𝛽 is small, then the first 
resonance is very low-frequency and can be found by 
expanding the Bessel functions into series. Thus, we 
obtain 

 Ω∗ = √4𝛽4  (19) 

he remaining roots of this equation can also be 

found, since at small 𝛽 the resonances are very close 
to the anti-resonances and can be found by the 
formula 

Ω𝑘 = 𝜇𝑘 + 𝛿𝑘 

where 𝛿𝑘/𝜇𝑘 ≪ 1; 𝜇𝑘 - the value of the anti-
resonances given in the table. From the approximate 
formulas and from the correct calculation it is seen 
that the natural frequencies increase asymptotically 
approaching the corresponding frequencies of the 
clamped disk. Another practically possible variant of 
the elastic fastening of the edge is the fixation, when 
the boundary conditions are satisfied 

 −𝑀 = 𝛼22𝑊𝑟
|
 ; 𝛼22 < 0. (20) 

It can be obtained from the general case by 
passage to the limit, taking 

  𝛼12 = 𝛼21 = 0; 𝛼1 = ∞; 0 < 𝛼22 < ∞ (21) 

  

and substituting in (1) 

 𝑊(𝑟, 𝑡) =

𝑃0𝑒−𝑖𝜔𝑡

𝜌ℎ𝜔2 ∙ {−1 +
∆1𝑉0(𝑘𝑅)+∆2𝐽0(𝑘𝑅)

İ0(𝑘𝑅)𝐽0(𝑘𝑅)−İ0(𝑘𝑅)𝐽0(𝑘𝑅)+
2𝐷𝑘2

𝛼11
∙İ0𝐽0

} (22) 

where 

  

 ∆1= İ0(𝑘𝑅) ∙ (𝛼22 +
𝐷(1 − ᵞ)

𝑅
) 𝑘 − 𝐷𝑘2𝐽0(𝑘𝑅) 

∆2= −𝐽0(𝑘𝑅) (𝛼22 +
𝐷(1 − ᵞ)

𝑅
) 𝑘 − 𝐷𝑘2𝐽0(𝑘𝑅) 

 ∆3= [𝐽0(𝑘𝑅)İ0(𝑘𝑅) − İ0(𝑘𝑅) − 𝐽0(𝑘𝑅)] [𝛼22 +
𝐷(1−𝜇)

𝑅
] 𝑘 − 𝐽0(𝑘𝑅)İ0(𝑘𝑅) 2𝐷𝑘2  

  

Here, the characteristic value of the determining 
reactive bending moment in the pinch is the angle of 
rotation of the section in the seal. This value is 
dimensionless, therefore, the dimensionless 
parameters introduced will be: 

 𝑟 = 𝑅; 
𝜕𝑊

𝜕𝑟
= 𝜑(𝜴);  𝛺 = 𝑘𝑅 (24) 

 𝛾 = −
𝛼22𝑅

2𝐷
+

1 − ᵞ

2
; 𝜑0 =

𝑃0𝑅3

2𝐷
 

Thus, we obtain 

 𝜑(𝛺) =
𝜑0(

𝐽0(𝛺)

𝐽0(𝛺)
+

İ0(𝛺)

𝐽0(𝛺)
)

𝛾𝛺2(
İ0(𝛺)

𝐽0(𝛺)
+

İ0(𝛺)

𝐽0(𝛺)
)+𝛺3

 (25) 

A feature of this particular characteristic is that 
there is no low-frequency resonance even with a small 
value of the solid parameter. At low frequencies, the 
frequency characteristic is:  

This circumstance reflects the mechanical meaning 
of the boundary condition (21), related with 
deformation of the sealant. The fact is that the 
boundary conditions are formulated in such a way that 
no oscillations are possible without its bending, and 
consequently the rigidity of the fastening can not be a 
source of a special self-form of oscillation, in which 
the sealer moves like a rigid disk. In other words, this 
circumstance can be reflected as follows. For 
separate values of the elasticity parameter, i.e. for 

𝛾 = −
1−𝑖

2
 and for 𝛾 = ∞ are accordingly, under the 

condition of free support and rigid pinching conditions. 
Although the first case is much low-frequency second, 
nevertheless the lowest frequency does not drop to 
zero, as in the previous case, In this case, the anti-
resonances are determined by the equation 

 
İ0(𝛺)

𝐽0(𝛺)
+

İ0(𝛺)

𝐽0(𝛺)
 =0 (26) 

and resonances 

 
İ0(𝛺)

𝐽0(𝛺)
−

İ0(𝛺)

𝐽0(𝛺)
=

𝛺

𝛾
 (27) 

The correct solution of this frequency equation, in 
which the value of the first resonance is represented 

as a function of the stiffness parameter of fixation 𝛾. It 
is important to note that the dimensionless elastic-

fixing parameter 𝛼22𝑅/2𝐷 adds additive to the 
parameter ((1 − 𝛾)/2, which characterizes the sealant 
material. Consequently, the parameter 
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 𝛾 = − (
𝛼22𝑅

2𝐷
+

1−ᵞ

2
) (28) 

can take both positive (for small 𝛼22) and negative 
values. This shows that with free support, the quantity 

(1 − ᵞ)/2 forms, as it were, an additional elasticity due 
to the antiplastic effect. 

The most interesting, but very difficult for research 
because of the greater number of parameters 
affecting the frequency characteristics is the general 
case, taking into account the compliance of the 
support at the same time to displacement and to 
bending. 

We consider the elastic fastening variant, which is 
described by the following boundary conditions: 

  

 𝐹 = 𝛼11𝑊; (29) 

 −𝑀 = 𝛼22
𝜕𝑊

𝜕𝑟
 (30) 

 𝑊(𝑟, 𝑡) =
𝑃0𝑒−𝑖𝜔𝑡

𝜌ℎ𝜔2 {−1 +
∆1𝑉0(𝑘𝑟)+∆2𝐽0(𝑘𝑟)

∆
} (31) 

 ∆1= ||𝛼11 0

0 𝑘[𝛼22+
𝐷(1−ᵞ)

𝑅
]İ0(𝑘𝑅)−𝐷𝑘2𝐽0(𝑘𝑅)

|| ;  

 ∆2= |

0

 𝑘[𝛼22+
𝐷(1−ᵞ)

𝑅
]İ0(𝑘𝑅)+𝐷𝑘2𝐽0(𝑘𝑅)

𝛼11

 0

| (32) 

 ∆=
|

|

𝛼11𝐽𝑜(𝑘𝑅) + 𝐷𝑘3(𝑘𝑅) 𝛼11𝐽𝑜(𝑘𝑅) −  𝐷𝑘3(𝑘𝑅)

𝑘 [𝛼21 +
𝐷(1 − ᵞ)

𝑅
] 𝐽0(𝑘𝑅) − 𝐷𝑘2𝐽0(𝑘𝑅)

−𝐷𝑘2𝐽0(𝑘𝑅) + 𝑘 [𝛼22 +
𝐷(1 − ᵞ)

𝑅
] İ0(𝑘𝑅)

|

|
  

  

As can be seen, in this case the frequency 
response depends on three dimensionless 

parameters, 𝛾, 𝛽. 

The problem becomes simpler if we confine 
ourselves to investigating only the natural frequencies, 
which are functions of only two parameters 
characterizing the compliance of the fastening. The 
equation of frequency is written in dimensionless form 

 - 
İ0(𝛺)İ0(𝛺)

𝐽0(𝛺)𝐽0
(𝛺)

∙
𝛺2𝛾

𝛽
+ [

𝛺3

𝛽
−

𝛾

𝛺
] [

İ0(𝛺)

𝐽0(𝛺)
−

İ0(𝛺)

𝐽0(𝛺)
] (33) 

In this case, there is a characteristic low frequency, 

which can be low if the parameter 𝛽 𝑖𝑠 small. It is for 
small 𝛽 that the solution of the frequency equation can 
be represented in the form 

 Ω∗ = √4𝛽 (
𝛾+1

𝛾+4
)

4
 (34) 

 

 

CONCLUSIONS 

1. With the dynamic behavior of a circular borehole 
seal under the influence of external pressure, a low-
frequency physical resonance arises due to a special 
form of oscillation. 
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