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     Abstract—Self-oscillatory hypersonic flows near 

cylindrical bodies, placed in open channels, are 

studied. Channels of rotation with the interval of 

cross-sectional area decreasing are considered. 

Two-dimensional Euler equations are solved by two 

methods, namely, by the explicit two step Godunov 

type method and by an implicit Runge-Kutta method. 

Smagorinsky artificial viscosity is applied in both 

methods to damp false fluctuations. Self-oscillatory 

regimes are found in CFD studies at free-stream 

Mach numbers of 5 to 7.5. Two types of unsteady 

regimes are observed. 
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  I. Introduction 

         This paper is devoted to continuation of CFD studies 

of new unsteady flows, carried out in [1-6]. Namely, new 

family of self-oscillatory flows near pairs cylinders - open 

channels [6], investigated at  free stream Mach num-

bers 3≤M  ≤4.5, is studied here at Mach numbers 

5≤M  ≤7.5.   

         Self-oscillatory compressible flows may be classified 

into some families: 1. Flows near supersonic jets, in-

flowing to forward facing cavities (see, for example, 

[7-9]); 2. Jet impinging on a plate [1,10-14]; 3. Flows 

around forward-facing cavities [15-17]; 4. Tangential 

flows over cavities [18-21]; 5. Flows around spiked 

bodies [1,22-24]; 6. Flows past bluff bodies with un-

steady vortex shedding [25-27]; 7. Transonic flows with 

bifurcations and self–oscillations near profiles [28-29]. 

Self     It is generally acknowledged, that self-sustained 

unsteady processes arise when a positive feedback 

effect takes place. A search for self-oscillatory com-

pressible flows is performed in [1-6] under supposition 

that resonance interactions of “active” elements of flows, 

namely, elements, which amplify disturbances, may be a 

way to realize a positive feedback effect.  In any case, 

existence of “active” elements in a flow – contact dis-

continuities and intersection points of shocks with 

shocks or shocks with contact discontinuities – is a good 

criteria for a search for unsteady flows. Numerical in-

vestigations of flows, containing the most number of 

“active” elements [1-6], result two new families of un-

steady flows. Flows near spherically blunted bodies 

(cylinders or cones), giving off opposite jets, are dis-

covered to have intensive self-sustained oscillations 

[2-3,5].  Unsteady regimes of flows near pairs cylinders 

- open channels of transient cross-sectional area [6] are 

found for free stream Mach numbers  3≤M  ≤4.5. These 

flows may contain shock waves, contact discontinuities, 

intersection points. CFD studies of these flows are car-

ried out here and self-oscillations are observed for 

free-stream Mach numbers 5≤M  ≤7.5.   

    II. CFD design approach 

2.1. Boundary conditions. Fig. 1 represents schemat-

ically a numerical domain and a mesh near a cylindrical 

body, placed in an open channel. All variables are pre-

scribed at the inflow boundary (HA). Parameters of the 

uniform stream are set at this boundary, namely, Mach 
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number M=M  , density ρ=1, pressure p=p  =1 (in di-

mensionless form), the radial velocity v=0. The normal 

velocity is equal to zero and other variables are extrap-

olated at solid surfaces (CB,CD,FE,FG). The radial ve-

locity v=0 at the symmetry axis HG, other variables are 

extrapolated. Extrapolation conditions are used at the 

tube exit DE and at the AB boundary. 

 

Fig. 1. Schematic representation of a numerical domain 

and of a mesh. 

          The channel form at the [a,b] interval of 

cross-sectional area decreasing is defined by the for-

mulae 

Y(x)=R tub -16h(x-a) 
2

(x-2b+a)
2

/(b-a)
4

. 

    2.2. Numerical methods. Two methods are used.  

    The second order two step version of the Godunov 

conservative method [30] is used in majority of flow 

calculations. Approximate linear solution of Riemann 

problem is applied. Algorithms of slopes limitation of left 

and right extrapolation curves are used to damp false 

oscillations near discontinuities. Review of such algo-

rithms of damping false oscillations is presented in [31]. 

Navier-Stokes viscous terms are included to Euler 

equations and the Smagorinsky artificial viscosity [32] is 

used for additional damping of false oscillations. This 

viscosity is calculated by equations  

 

µ= ρ|S|(C s Δ)
2
, |S| = (2S ik S ik )

2/1
,           

S ik = ( u i / x k + u k / x i )/2,   

Δ= Δ Δη (x


y - y


x )/(Min(Δ
2
( x 2


+y 2


),  

Δη
2
( x 2


+y 2


)))

2/1
, 

 

      where functions x=x( ,η), y=y( ,η) perform mapping 

of the unit square {0≤ ≤1, 0≤η≤ 1} to a curvilinear 

quadrangle on the plane of physical variables, 

Δ =1/N


, Δη=1/N ,  N


, N  - numbers of intervals 

of the quadrangular mesh in a unit square, C s - constant, 

which is chosen in trial computations, C s =0.85. 

          The implicit conservative Runge-Kutta method [33]  

is used for the accuracy control by comparing results 

with Godunov type method data. Written above Sma-

gorinsky artificial viscosity terms are included in this 

method too. As a result the initial third order of approx-

imation of the method [33] is reduced to the second 

order.  

          Both methods are modified here. Namely, special 

versions of codes are developed for the case when 

functions x=x(a,b), y=y(a,b) perform mapping of the unit 

square with excisions {0≤a≤a 0 , 0≤b≤b 0 }, {a 1 ≤ a ≤1, 

0≤b≤b 1 } to a curvilinear quadrangle with curvilinear 

quadrangular excisions (see fig. 1). These versions al-

low carrying out calculations, described below, without 

dividing complicated domains into subdomains. Calcu-

lations are performed at CFL numbers from the interval 

[0.35,0.6], the 515 586 mesh is used usually. 

    Naturally, numerical calculations deal with dimen-

sionless variables. These variables are defined as rela-

tions of initial variables and next  free-stream parame-

ters or the body size: p   - for pressure, ρ   - for a density, 

 p  - for a velocity, r tub =y(C)-y(H) (the maximum 

inner channel radius) – for space variables, 

r tub /
 p  - for time.  

  III. Results and discussion 

   Considered here flows contain at least two shock 
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waves. First one appears as a result of flow braking by a 

cylinder. Second one appears as a result of flow braking 

by the tube end. It is found, that self-oscillations may 

appear, if the relation of channel and tube lengths pro-

vides position of shock waves intersection points closed 

to the channel edges (signed by C in fig.1). The most 

values of self-oscillations intensities are observed in the 

region near this edge. So intensities at the point C are 

mainly considered below. The self-sustained fluctuations 

intensity is evaluated here by the density 

root-mean-square   Δ ρ: 

  Δ ρ =
2' ,    

2' = 

N

n 1
( ρ n -  )

2
/N,     = 

 

N

n 1
ρ n /N, 

 n signs time levels.  

    It is found in present CFD investigations, that flow 

regimes depend on position intersection points of two 

shock waves, mentioned above, and character of this 

point movement. Two types of self-oscillatory flows are 

observed here. Next propositions on flow regimes are 

formulated as a result of CFD studies: 

a) If intersection points of two shock waves are 

situated march higher or sufficiently lower of the 

tube edge, then flow is steady.  

b) If the contact discontinuity, issued from this point, 

is directed always above the tube edge and 

moves outside a tube, a flow of the first type 

takes place. Nearly periodical oscillations of a 

moderate intensity are observed in this case. It 

seems, that this oscillation mechanism of the first 

type is similar to the oscillation mechanism in 

flows near spiked bodies. 

c) If this contact discontinuity is directed inside or 

outside the tube alternately, flow contains short 

time peaks of pressure and density near the tube 

edge. These peaks appear as a result of sudden 

braking by the tube edge of a current, adjoined to 

the contact discontinuity, when this discontinuity 

changes direction of movement,     namely, 

when the discontinuity starts      movement 

upward outside of a tube. Such      compli-

cated oscillations are classified      here as 

oscillations of the second type. 

     This flow physics is illustrated below by numerical 

examples.    

     Position of intersection points of two shocks waves 

depends significantly on geometry control parameter d 

(the cylinder and channel lengths difference). To 

demonstrate written above flow physics 9 flows are 

presented in table. These flows are defined by various 

values of geometrical parameters d, a, b, other control 

parameters are fixed:  R cyl  =0.3 (cylinder radius), 

R tub =1 (maximum inner radius of tube), R min = 

R tub -h=1-h=0.94 (the least channel radius), h =0.06, M   

=0.7 (free stream Mach number). Changeable geomet-

rical control parameters d, a, b (see fig. 1) are repre-

sented in columns 2-4 of table. Results of calculations, 

namely, density root-mean-square magnitudes at the 

tube edge are shown in the fifth column of table. Go-

dunov type method results, received for the 515 586 

mesh, are used for calculations of these magnitudes.  

Table. Oscillation intensities. 

  

n d a B  Δ ρ 

1 0.55 0.251 0.352 Steady 

2 0.60 0.200 0.280 3.245 

3 0.70 0.225 0.315 4.109 

4 0.80 0.200 0.280 2.758 

5 0.90 0.175 0.245 4.641 

6 1.00 0.150 0.210 4.820 

7 1.10 0.137 0.192 4.413 

8 1.20 0.137 0.192 0.077 

9 1.30 0.112 0.157 steady 

 

     Figs. 2 and 3 show density distributions in steady 

flows 1 and 9, presented in the table above. Steady 

regimes of these two flows are natural according to 

proposition a) of flow physics exposition above.  
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Fig. 2. The density distribution, variant 1 of table 

 

Fig. 3. The density distribution, variant 9 of table  

Oscillations of two types are declared in the flow physics 

exposition. Figs 4-6 demonstrate first type of oscillations. 

Fig 4  shows density histories at the point C (see fig. 1) 

for the self-oscillatory flow number 6 in table, defined by 

the geometry parameter d=1.0 (the cylinder and channel  

lengths difference). Godunov type method data are 

marked as G. m., Runge-Kutta method data are marked 

as R.-K.m. The time interval, shown in fig. 4, corre-

sponds to 48000 time steps of a numerical method.  

 

Fig. 4. Density histories, d=1.0. 

         Density histories, presented in fig. 4, illustrates that 

this flow is nearly periodic with the T=1.3 period.  Go-

dunov type method calculations are continued past the 

final end of fig. 4 t(fin) ≈18.9 through one period T. 

Density distributions for time instants t=18.9+T/4 and 

t=18.9+T3/4 are represented in figs. 5 and 6.  These 

figs. correspond approximately to minimal and maximal 

distance of intersection point from the tube edge (point C 

in fig. 1). 

 

Fig. 5. The density distribution, t=18.9+T/4. 

 

Fig. 6. The density distribution, t=18.9+T3/4. 

So,  if the shock waves intersection point moves always 

above the tube edge, flow oscillations are nearly periodic. 

This example illustrates point b) of flow physics propo-

sitions, presented above. It seems, that the oscillation 

mechanism in this case is similar to the same of flows 

near spiked bodies [22-24]. But the oscillation mecha-

nism of flows near spiked bodies is not strong enough in 

present case and if consider the variant, which differs 

from the variant 6 of table (presented in figs. 4-6) only by 

one control parameter h=0 instead of h= 0.06, that is to 

say if consider straight tube, then a steady flow takes 

place. Some unsteady flows with different Mach num-

bers from the interval [5-7.5] are checked by similar way 
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and steady flows are resulted in every case. So, ab-

sence of the interval of cross sectional area decreasing 

results absence of oscillations. The question is how this 

area decreasing contributes to the oscillations genera-

tion? When the flow mass through a tube grows in a 

process of the flow dynamic, area decreasing 

strengthens pressure growing in a tube and, conse-

quently, strengthens flow braking. So, area decreasing 

provides additional positive feed back effect, which 

contributes to the oscillation generation.  

          It is interesting to consider the neighbour variant 5 in 

table above. The geometry parameter d=0.9 is less then 

this one of the flow, considered above. So the range of 

shock waves intersection point movement may be 

waited to be nearer to the tube edge and, consequently, 

the type of oscillation may be changed. Fig. 7 shows the 

history of density magnitudes at point C for this flow. 

Calculations are carried out by the Godunov type 

method on the 515 586 mesh, 48000 time steps are 

performed.   

 

Fig. 7. The density history, d=0.9. 

   Peaks appearing may be seen in this fig. It seems, 

that peaks appear nearly periodically, but after first peak 

at time instant t=t 1≈18.06 (see fig. 7) next peak at time 

instant t= t 2 ≈19.12 is missed by any reasons. It is in-

teresting to see density distributions at time instants t1  

and t= t 2 . These distributions are shown in figs. 8 and 9. 

It can be seen that these figs. differ one from another 

mainly by position of the shock waves intersection point.   

 

Fig.  Fig. 8. Density distributions, t=t1 . 

 

Fig. 9. Density distributions, t=t 2 . 

          The question is why the density compression near 

the tube edge shown in fig. 8 significantly (about two 

times) exceeds the density compression shown in fig. 9? 

The shock waves intersection point, shown in fig. 9, is 

higher then the tube edge. It is probable that the contact 

discontinuity, issued from this point, was higher then the 

tube edge at previous time instants and, consequently, 

effect of current braking near the tube edge is absent. At 

the same time flow structure, shown in fig. 8, highly likely 

corresponds to the time instant after change of the 

contact discontinuity drift direction. If this discontinuity 

starts previously drifting upward, then braking had been 

performed and compression takes place. This explana-

tion is based on proposition c) of flow physics exposition, 

presented above.  

          Similar flow physics are observed for other free 

stream Mach numbers. For example, fig. 10 shows 
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histories of density magnitudes at point C for the M   

=0.5 self-oscillatory flow. Calculations are carried out for 

geometry control parameters d=0.85, a=.197, b=.263, 

h=0.07, 515×586 and 715×816 meshes are used. Initial 

data for the second mesh are received by linear inter-

polation from the first mesh at time instant t=16. Flow 

modeling requires 26000 time steps for the first mesh 

and 34670 time steps for the second mesh. The second 

order Godunov type method is used.   

 

  Fig. 10. Density histories for two meshes, M  =0.5. 

          Figs. 11-16 present density distributions, corre-

sponding to time instances in the interval, shown at the 

bottom of fig. 10. This interval is divided into 5 subin-

tervals. Six figs. below correspond to bounds of subin-

tervals t(i)=t(0)+iτ, i=0,…,5, t(0) ≈18.21, τ≈0.235. The 

515×586 mesh solution is shown. There is a high peak 

between time instants t(2) and t(3). Fig. 13, corre-

sponding to the time instance t(2), shows flow structure 

with the shock waves intersection point, situated lower of 

the tube edge. Contact discontinuity, issued from this 

point, is situated below the tube edge. Fig. 14, corre-

sponding to the time instance t(3), shows flow structure 

with the shock waves intersection point, situated higher 

of the tube edge. The contact discontinuity, issued from 

this point, is situated above the tube edge. It follows, that 

the contact discontinuity changes direction of propaga-

tion upward between these time instants, consequently, 

the current adjoined to the contact discontinuity under-

goes sudden braking, which results compression, pro-

ducing the density peak, visible in fig. 10 between time 

instants t(2) and t(3). It may be seen, that the proposition 

c) of the flow physics exposition, presented above, ex-

plains appearance of this peak.  

 

Fig. 11. The density distribution, t= t(0). 

        

Fig. 12. The density distribution, t= t(1). 

 

Fig. 13. The density distribution, t= t(2). 
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Fig. 14. The density distribution, t= t(3). 

. 

      Fig. 15. The density distribution, t=t(4). 

 

Fig. 16. The density distribution, t=t(5). 

   IV. Conclusions 

         Investigations of self-oscillatory interactions of 

supersonic uniform streams with pairs cylindrical bodies 

- open channels, started in (Pinchukov, 2018), are con-

tinued here. Initial Mach numbers interval 3≤M  ≤4.5 of 

unsteady regimes (Pinchukov, 2018) is extended here 

and self-oscillatory flows are found for Mach numbers 

5≤M  ≤7.5. Channels with the interval of cross-sectional 

area decreasing are considered. This decreasing is 

conducive to possibilities of the self-oscillatory regimes 

appearance.    

   It is found here, that unsteady regimes exist, only if 

intersection points of available two shock waves are not 

too far from the tube edge. Two types of self-oscillatory 

flows are observed.  

   If contact discontinuity, issued from the intersection 

point, is directed always above the tube edge, flows of 

the first type take place, which are nearly periodical. It 

seems, that the oscillation mechanism in this case is 

similar to the oscillation mechanism in flows near spiked 

bodies. The inner cylinder plays the role of a spike. But 

this mechanism is not strong enough and only existence 

of the interval of cross-sectional area decreasing, which 

provides additional feedback effect, may produce oscil-

lations.   

    If this contact discontinuity is directed inside or out-

side a tube alternately, second type of unsteady flows 

takes place. Namely, flows contain short time peaks of 

pressure and density near the tube edge. These peaks 

appear as a result of sudden braking by the tube edge of 

a current, adjoined to the contact discontinuity, when this 

discontinuity changes direction of movement, namely, 

when the discontinuity starts movement upward. 
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