Metallographic studies of vessel steel samples: ДС, 35Г / 40Г and steel 20 by fractal analysis

Shtofel Olena O.
Department of General Physics and Solid State Physics
Igor Sikorsky Kyiv Polytechnic Institute
Kiev, Ukraine
o.shtof@gmail.com

Chizhskaya Tetiana G.
Department of General Physics and Solid State Physics
Igor Sikorsky Kyiv Polytechnic Institute
Kiev, Ukraine
chijskaya@ua.fm

Kulieznova Svitlana S.
Department of Theory of Practice and English Translation
Igor Sikorsky Kyiv Polytechnic Institute
Kiev, Ukraine
kulezneva@ukr.net

Abstract — Metallography is a complex of studies and a number of analytic actions focused on the research (investigation) of macro- and micro-structures of metals as well as the research of the mechanism of metal structure formation, and dependence of structure influence on the metal characteristics. Thus the objective of this paper research is to find the interconnection between the data received for the structures with the help of the metallographic analysis and the method of fractal analysis.

Keywords — metallography; steel; fractal; analysis; structure; metal;

I. INTRODUCTION

Metallographic study of the samples needs enough accuracy while selecting them, their preparation, polishing and pickling samples and while studying samples’ structure [1]. Traditional methods of macro- and micro-analysis are widely used while studying metal structure and its effect on the metal characteristics [2]. In the article we also demonstrate the method of fractal analysis, that allows to define micro-/macro-photography of the structure by introducing the volume of fractal dimension. Fractal dimension of a quantity was introduced by B.B. Mandelbrot and was used to study the metal surface fracture [3, 4]. Fractal analysis method was successfully used while studying the process of metals and alloys cracking [5].

Fractal geometry methods were effective for the analysis of self-structuring phenomena in dissipative systems and made it possible to discover changes in the fractal dimension of a quantity with the metal characteristics [6].

In our article we are studying the metallographic pattern of samples structure and its fractal dimensions. The samples were cut out from some points of the objects from the vessel steel ДС, 35Г/40Г, 20. Two types of samples were used: sample D, from the place deformation free/having minimum deformation, sample W, from the place having the deformation. All the samples had been manufactured under the standard technique using diamond pastes of different dispersivity. Then the samples were analyzed for “contaminants” – content of nonmetallic inclusions. The decisive role in the process of studying the nonmetallic inclusions effect on steel quality has their size, form, chemical and physical characteristics, as well as their location in relation to the grains of the casted meal. The mentioned above inclusions properties depend on the steel chemical characteristics, method of its melting. Moreover, these factors can change in a wide range even while using the same method of steel production.

The traditional method to control the inclusions fraction is to analyze macro- and micro-sections of the specific size from the particular point of the cut-out by light microscopy. The size calculation and evaluation are made by hand. The metallographic analysis was conducted on “Neophot-32” microscope under different increments. To detect the micro-structure we used etching in 4% solution of nitric acid in spirit.

II. MATERIALS AND METHOD

Nonmetallic inclusions appear as a result of a number of physical and chemical phenomena that take place in a melted or solidified metal in the
process of its manufacturing. Nonmetallic inclusions in steel are alien bodies that destruct its structure homogeneity. That is why, their effect on mechanical and other properties can be rather significant.

The calculation of nonmetallic impurities in the metal samples was delivered according to State standard GOST 1778-70 (“Steel. Metallic methods of estimation nonmetallic inclusions”) [7], by comparing with the standard scales on the polished not etched surface of the micro-section of the metallographic specimen under the 100-magnification [7].

First, 12 samples were cut out. At the first stage they were studied on one of the axes (plane perpendicular to the axis) (Fig.1) for having nonmetallic inclusions.

Fig.1. Study of the sample cut out from one of the sides.

From the data data certificate of the object we took the results of the spectrum analysis given by the plant-manufacturer (Table 1) and the results received in the Laboratory of Chemical Analysis of the E.O. Paton Electric Welding Institute (Table 2).

Table 1. The results of spectrum analysis of sample metals

<table>
<thead>
<tr>
<th>Percentage of faction of total mass</th>
<th>Steel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Si</td>
<td>Mn</td>
</tr>
<tr>
<td>0.43-0.53</td>
<td>0.17-0.37</td>
<td>0.17-1.00</td>
</tr>
<tr>
<td>0.32-0.40</td>
<td>0.17-0.37</td>
<td>0.17-1.00</td>
</tr>
<tr>
<td>0.17-0.24</td>
<td>0.17-0.37</td>
<td>0.17-0.35</td>
</tr>
</tbody>
</table>

Table 2. The results of the spectrum analysis of the samples metal (experimental data)

<table>
<thead>
<tr>
<th>Percentage of faction of total mass</th>
<th>Steel/Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Si</td>
</tr>
<tr>
<td>0.512</td>
<td>0.512</td>
</tr>
<tr>
<td>0.563</td>
<td>0.563</td>
</tr>
<tr>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>0.19</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Then the sample was grinded and polished with the following estimation of the nonmetallic inclusions. The received photographs under the increases of 200 were used for the investigation of ‘impurity’. The

Fig.2. Dependence of fractional dimensions on sample structure increase.

These data show the clear picture of the range where fractional dimension is invariant. Thus, while comparing, it is worth working with the pictures taken under similar multiplication.

III. RESULTS AND DISCUSSION

From the vessel steel samples we cut out the samples which then were studied with the help of spectral analysis. The results were then compared with the State standard GOST (Table 1, Table 2).

For one of the samples (D3) fractal dimensions were calculated by the method of fractal analysis under different increases (Fig.2).
fractal dimensions were calculated for the received photographs (Table 3.).

Table 3. Fractal dimensions data for each sample.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Fractal (fractional) dimension, D</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.482</td>
</tr>
<tr>
<td>W1</td>
<td>0.397</td>
</tr>
<tr>
<td>D2</td>
<td>0.382</td>
</tr>
<tr>
<td>W2</td>
<td>0.464</td>
</tr>
<tr>
<td>D3</td>
<td>0.382</td>
</tr>
<tr>
<td>W3</td>
<td>0.498</td>
</tr>
<tr>
<td>D4</td>
<td>0.254</td>
</tr>
<tr>
<td>W4</td>
<td>0.538</td>
</tr>
<tr>
<td>D5</td>
<td>0.444</td>
</tr>
<tr>
<td>W51</td>
<td>0.302</td>
</tr>
<tr>
<td>W52</td>
<td>0.558</td>
</tr>
<tr>
<td>W53</td>
<td>0.715</td>
</tr>
<tr>
<td>W54</td>
<td>0.506</td>
</tr>
</tbody>
</table>

The impurity of non-metallic inclusions under State standard GOST 1778-70 is given below:

Sample D1. Most inclusions are pointed oxides. The impurity with them corresponds to mark №1 in ’a’ line on the scale “pointed oxides”. It is worth mentioning that on the sample edge on one side the number of such type oxides increased up to the mark 3а-4а. The following types of inclusions can also be observed:
- Sulphides extended along the 26 mark of rolled products (sometimes 36) on the scale “lined sulphides”.
- Sulphides having the fibre form seen under huge increments (x1000).
- Sulphides with the oxides inclusion (they are oxisulphides).
- Dispersed silicates of the tobular form in a small amount.

Lined oxides: mark 0, sometimes 1а (rarely).

Sample W1.
- Pointed oxides: mark 1а in the sample centre and 3а-4а on the edge.
- Lined oxides: mark 0, sometimes 1а (rarely).
- Lined sulphides: mark 36.
- Sulphides with the inclusions of oxides, sulphides of the fibre form.
- Dispersed silicates of the tobular form in a small amount.

Sample D2.
- Pointed oxides: mark 1а
- Line oxides: mark 0 (rarely 1а)
- Lined sulphides: mark - 3 6
- Sulphides of the fibre form (x1000)
- Oxisulphides
- Dispersed silicates of the tobular form in a small amount.

Sample W2
- Pointed oxides: mark 1а
- Lined oxides: less than 1а (”0”)
- Lined sulphides: mark - 3 6
- Sulphides of the fibre form (x1000)
- Oxisulphides
- Tobular-dispersed silicates – rarely.

In samples D3, W3, D4, W4 (35Г/40Г) we found complex sulphides of iron and manganese expanded (prolonged, stretched) along the rolled stock. Such inclusions prevail. We could also observe the oxides in the form of lines and in different location. Under the increment of 500-1000 sulphides in the fibre form, oxisulphides and dispersed inclusions of tubular silicates were found.

Sample D3
- Pointed oxides: mark less than 1а (”0”)
- Lined oxides: mark 2а (chains of oxides)
- Lined sulphides: mark 3а-3б (sometimes 4а)

Sample W3
- Pointed oxides: mark less than 1а
- Lined oxides: mark 26 (sometimes 3а)
- Lined sulphides: mark 26 (sometimes 3а)

Sample D4
- Pointed oxides: mark less than 1а
- Lined oxides: mark 2а
- Lined sulphides: mark 36
- It is important to note that oxisulphades can hardly be found in this sample

Sample W4
- Pointed oxides: mark less than 1а (”0”)
- Lined sulphides: mark 36
- Lined oxides: mark 1а (chain of oxides)

The description of non-metal inclusions in samples D5, W51, W52, W53 (steel 20)
- The main part of these inclusions is oxides inclusions of the uniform location. We found also oxisulphides, sulphides stretched along the rolling stock, globular silicates in small amount, single nitrides and oxinitrids of the regular geometric shape. Lined oxides were not found.

Sample D5
- Pointed oxides: mark 3а in the centre and 4а on the edge
- Lined sulphides: mark 1а

Sample W51
- Pointed oxides: mark 2а (sometimes 3а)
- Lined oxides: mark 16 (rarely) and in some the most “contaminated” places lined sulphides had mark 1а or less (”0”)

Sample W52
Pointed oxides: mark 3а
Lined sulphides: mark 1а

Sample W₅₃

This sample was very “pure” as for the non-metal inclusions. Impurity for all the types of inclusions was less than in the State standard GOST. Under the increments of 500-1000 dispersed oxides, tubular silicates and oxisulphides were found.

CONCLUSIONS

In our study a set of tests and analytical procedures was carried out. The main focus was on the investigation of macro- and micro-structures of metals.

The results of the conducted investigation are the following: samples spectrum analysis was carried out (Table 2); the dependence of fractal dimensions on the increases was analyzed (Fig. 2); fractal dimensions were calculated (Table 3), the dependence of fractal dimensions on non-metal inclusions was analyzed (Fig.3, Fig.4), as well as the dependence of fractal dimensions on the wall thickness.

During the investigation it was found out that fractal dimensions change according to the non-metal inclusions for different metals and this require more detailed approach and study; fractal dimensions decrease with the increase of the wall thickness; under different increments a slight change of fractal dimensions was observed but for more accurate study it is worth using one increment to discover the interdependence.

REFERENCES

