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Abstract—Numerical studies of supersonic flows 

near spherically blunted cylinders, giving off op-

posite supersonic jets from forehead surfaces, are 

carried out. Two-dimensional Euler equations of a 

polytropic gas with the specific heats ratio 1.4 are 

solved. Self-oscillatory flows are found for the free 

stream Mach numbers interval [1.1 - 1.7]. Explicit 

Godunov type first and second orders schemes 

are used. Comparison of SPL data provided by first 

order and second orders methods is presented.  
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  I. Introduction  

   This paper is devoted to continuation of a numeri-

cal search for unsteady compressible flows, started in 

[1]. The result of these search is a new family of 

self-oscillatory flows near blunted cylinders, giving off 

opposite jets.[2-3]. Implicit third order Runge-Kutta 

method [4] is used. Next studies of this family are 

performed here on the base of a first order version of 

the highly reliable Godunov method [5]. Numerical flow 

fields, provided by this method, are influenced by the 

first order scheme dissipation. To evaluate this influ-

ence second order two step version of Godunov 

method is used additionally in present calculations  

   Flow self-oscillations are supposed here to be 

resulted from resonance interactions of flow “ac-

tive” elements, namely, elements, which amplify 

disturbances. The hypothesis [1] is used that con-

tact discontinuities and intersection points (lines in 

3d case) of shocks with shocks or shocks with 

contact discontinuities compose the flow set of “ac-

tive” elements. A search for new unsteady flows is 

conducted by investigations of flows, containing the 

most number of “active” elements. According to this 

mechanism of oscillations numerical method for 

simulations of unsteady flows should provide good 

correspondence of directions of disturbances 

propagation for Euler equations and numerical 

method. Godunove type methods provide good 

correspondence and may be evaluated as highly 

proper for application in this CFD field.  

  Opposite jets, out-flowing from forehead surfaces 

of blunted bodies, may be used for protecting bod-

ies from heating by a mainstream (see, for example, 

[6]-[8]). Self-oscillatory regimes are not observed in 

previous investigations. At the same time calculated 

here flow fields contain three shock waves, three 

contact discontinuities and some intersection points 

[1]. So these flows may be supposed to produce 

self-oscillations, according to the formulated above 

hypothesis. It seems that there is contradiction be-

tween present results and other investigations. To 

settle this contradiction it should be noted that, first, 

flows near blunted bodies with opposite jets are de-

fined by large number of control parameters and 

depend on body and nozzle forms, consequently, 

require more thorough investigations, second, sub-

sonic or transonic jets are usually used for cooling of 

the bodies while present considerations deal with jet 

Mach numbers M
jet

 ≥2.5.  

   Supersonic flows near blunted cylinders, giving of 
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opposite jets [1-3], compose new class of jet 

self-oscillatory flows.  Besides present new family, 

there are two known jet flows families, containing:  1. 

Flows near supersonic jets, inflowing to forward facing 

cavities (see, for example, [9]-[12]); 2. Flows near su-

personic jets, impinging on plates [13]-[21].    

  II. CFD Design Approach 

   A computational domain and a mesh may be seen 

in fig. 1. The blunted cylinder wall is shown by a bold 

line. Opposite supersonic jets outflow from nozzles in 

forehead parts of blunted cylinders. These jets are 

supposed to be spherically symmetrical. Jet velocities 

at exits of nozzles are normal to spherical surfaces.      

 

   Fig. 1. Mesh and computational domain 

schematic representation. 

 

   Boundary conditions for computations are zero 

value of the normal velocity and extrapolation rela-

tions for all other variables along the body surface 

(boundary DC), extrapolations on the outflow bound-

ary BC at right side of numerical domain (see fig 1), 

prescribed variables on the inflow forehead boundary 

AB and on the spherical boundary DE, corresponding 

to the opposite jet, zero value of the radial velocity 

and extrapolations at symmetry axis AE. 

  Godunov type conservative first order and second 

order versions of the method [5] with approximate 

linear solution of Riman problem are employed here. 

Algorithms of slopes limitation of left and right extrap-

olation curves in second order two step version of 

Godunov method are used to damp false oscillations 

near discontinuities. Review of such algorithms of 

damping false oscillations are presented in [22]. Na-

vier-Stokes viscous terms are included to Euler equa-

tions and the Smagorinsky artificial viscosity [23] is 

used for additional damping of false oscillations. This 

viscosity is calculated by equations  

µ= ρ|S|(C s Δ)
2
, |S| = (2S ik S ik )

2/1
,           

S ik = ( u i / x k + u k / x i )/2,   

Δ= Δ Δη (x


y - y


x )/(Min(Δ
2
( x 2


+y 2


),  

Δη
2
( x 2


+y 2


)))

2/1
, 

where functions x=x( ,η), y=y( ,η) perform map-

ping of the unit square {0≤ ≤1, 0 ≤ η ≤ 1} to a curvi-

linear quadrangle on the plane of physical variables, 

Δ =1/N


, Δη=1/N  ,  N


, N   - numbers of in-

tervals of the quadrangular mesh in a unit square, C s - 

constant, which is chosen in trial computations, 

C s =0.85. The 490 544 mesh is used usually here. 

  Numerical calculations deal with dimensionless 

variables. These variables are defined as relations of 

initial variables and next parameters of the free stream 

flow or radiuses of cylinders r: p  - for pressure, ρ
 

 - for density, 
 p  - for velocity, r – for space 

variables, r/
 p  - for time.  

  The intensity of flow oscillations may be measured 

by sound pressure level at some point:  

SPL=10 Log 10 (
2'p /p

2

ref ), 
2'p = 

n

(p n - p )
2

/N,  

p ref =20mkPa/p  ,  

where P  =101325Pa (the air pressure under normal 

conditions) is used since dimensionless variables are 

dealt here. Sound pressure levels at the intersection 

point of spherical and cylindrical parts are represented 

in two tables below.  
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  III. Free stream Mach numbers 1.1≤  

M  ≤1.3. 

   Studied here flows are defined by five control pa-

rameters:  M  , M
jet

, ρ
jet

, p
jet

, б
jet

- free stream 

and jet Mach numbers, jet density, jet pressure, a jet 

half-angle. Large number of control parameters makes 

systematic parametric study of these flows too expen-

sive. A search for new self-oscillatory flows is per-

formed by moving step by step in the greater Mach 

number direction from any initial flows, for example, 

published in [2], [3]. Results of a search are repre-

sented in tables 1-2. Columns 1-2 show free stream 

and jet Mach numbers, column 3-4 show jet pressure 

and density, column 5 contains sin(б
jet

), б
jet

 - a jet 

half-angle, 6
th
 and 7

th
 columns show results of com-

putations, namely, SPL data at the intersection point of 

spherical and cylindrical parts of considered bodies. 

First order Godunov method computational data are 

represented in the 6
th
 column, second order Godunov 

method data are represented in the 7
th
 column. 

  
 

Table1: Sound pressure levels at 1.1≤ M  ≤1.3. 

M   M
jet

      P
jet

 Ρ
jet

  Sin(б) SPL, 
m. 1 

SPL, 
m. 2 

1.1 3.0 0.5 0.583 12/30  164.8 166.5 

1.1 3.5 0.4 0.625 1/3 172.0 172.3 

1.2 4.0 0.292 0.469 1/3 158.6 169.6 

1.3 4.5 0.233 0.465 11/30 158.4 170.0 

1.3 4.5 0.233 0.465 1/3 162.5 169.8 

1.3 4.5 0.233 0.465 9/30 162.2 163.4 

   Fig. 2 shows the density distribution for the un-
steady flow 5 in table 1, first order Godunov method 
data are pictured. Intensive self-oscillations produce 
shock waves, moving towards the main bold shock 
wave, and vortexes, drifting above the cylinder sur-
face.        

  The pressure history is shown in fig. 3 for this flow. 
Five points of minimal values of pressure may be seen 
in this fig. So the main tone period of this flow may be 

evaluated approximately by the formulae τ = (t 5 -t 1 )/4 = 

3.72.  

 

   Fig. 2. M  =1.3, the density distribution. 

 

 

   Fig. 3. M  =1.3, the pressure history. 

  IV.  Free Stream Mach Numbers 1.4≤ 

M  ≤1.7. 

   Results of a CFD search for this Mach numbers 
interval are represented in table 2. 

Table2: Sound pressure levels at 1.4≤ M  ≤1.7. 

M   M
jet

      P
jet

  Ρ
jet

  Sin(б) SPL, 
m. 1 

SPL, 
m. 2 

1.4 5.5 0.20 0.434 1/3  169.2 171.8 

1.4 5.5 0.25 0.347 1/3 173.6 178.5 

1.5 5.5 0.25 0.289 1/3 174.6 175.2 

1.5 5.5 0.25 0.347 1/3 164.2 174.4 

1.6 5.5 0.25 0.289 1/3 162.3 176.3 

1.7 5.5 0.25 0.289 1/3 159.9 175.5 

1.7 5.5 0.25 0.347 1/3 164.0 177.0 

 

   Fig. 4 shows the density distribution, fig.5 shows 
the pressure history for the unsteady flow 2 in table 2. 
First order Godunov method data are pictured in these 
figs. Intensive self-oscillations produce shock waves, 
moving towards the main bold shock wave, and vor-
texes, drifting above the cylinder surface. Six points of 
minimal values of pressure may be seen in fig. 5. So 
main tone period of this flow may be evaluated ap-
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proximately by the formulae τ = (t 6 -t1)/5 = 4.40. If to 

look more attentively at this fig., it may be seen that 
this flow is periodical with the period T=2 τ. 

   

 

   Fig. 4. M  =1.4, the density distribution,  

 

   Fig. 5. M  =1.4, the pressure history 

   Density distributions, considered above, corre-
spond to first order method data. Fig. 6 shows the 
density distribution for the unsteady flow 7 in table 2, 
second order Godunov method data are pictured. In-
tensive self-oscillations produce shock waves, moving 
towards the main bold shock wave, and vortexes, 
drifting above the cylinder surface.    

   Pressure histories are shown in fig. 7 for this flow. 
First order Godunov method data are painted by dark 
symbols, second order Godunov method data are 
painted by rose symbols. At the initial time instant of 
these histories flow fields correspond to developed 
self-oscillatory regime in Godunov first order method 
simulation. Large difference of oscillations intensities 
and of periods of main modes are seen in fig. 4b. 
Corresponding difference of SPL data (164db and 
177db) may be seen for this variant in the line 7 of 
table 2.  Main modes of these two solutions are de-
fined by periods τ = 0.945 and τ = 1.70. So, significant 
dissipation of the first order Godunov method damps 
fast modes and limits intensity of oscillations. 

     

Fig. 6. M  =1.7, the density distribution. 

  

   Fig. 7. M  =1.7, pressure histories, first and 

second order methods. 

   Similar large difference of oscillation intensities, 
calculated for first and second order methods data, 
may be seen in lines 3-6 in tables 1 and 2, 4-7 in table 
2. Some lines contain variants with closed first and 
second orders SPL data (vars. 1, 2 in table1 and vars. 
1, 3 in table 2). It is interesting to note that in all cases 
main tones of considered first and second orders 
methods solutions are different, namely, main tone 
periods are significantly longer in the case of the first 
order method then in the case of the second order 
method. There are significant number of variants, 
omitted in tables 1-2, which are self-oscillatory in 
second orders Godunov method simulations, but are 
steady or contain only negligible oscillations in the 
case of first orders Godunov method simulations.   

   To investigate more carefully influence of the first 
order dissipation on a numerical solution this flow (line 

7 in table2) is calculated additionally on the 971 999 
grid. Numerical solution is interpolated from the 

490 544 grid to the 971 999 grid at initial time 
instant t=49.0 (see fig. 4b). Fig. 5 shows density his-

tories, 490 544 data are drawn by dark symbols, 

971 999 data are drawn by rose symbols. Intensity of 
self-oscillations increased and short period modes 
appeared to final time instant in the case of the 

971 999 mesh. This solution seems to be more like 

the second order solution at the 490 544 grid. It is 
interesting to note, that the second order solution re-
quires computer work about four times less then 

computer work of first order method for the 971 999 
mesh.   
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   Fig. 8. M  =1.7, pressure histories, 490 544 

and 971 999 grids. 

   Significant changeability of computational data is 
demonstrated by considered above results. It is a 
feature of this family of unsteady flows, which may be 
explained by high role of contact discontinuities in 
“active” elements interactions. It should be noted that 
present flows contains three contact discontinuities, 
namely, long contact discontinuity, separating the free 
flow and the jet flow, contact discontinuity, corre-
sponding to the boundary of opposite jet, and contact 
discontinuity, corresponding to the boundary of the 
separation zone near the jet and the body wall. Kel-
vin-Helmholtz instability of these contact discontinui-
ties produces disturbances and their interactions may 
be supposed to take important role in generation of 
self- oscillations. Particularly, the first contact discon-
tinuity is seen to be disturbed as a result of instability 
by waves, which are drifted along the cylinder surface 
(see, for example, fig 6).  

   Growth of disturbances, resulted from instability, 
highly depends on the dissipation of a numerical 
method. This dependence leads to changeability of 
numerical results, mentioned above. The question is 
which flow may be observed experimentally. It seems, 
that laminar flows may by close to second order 
method solutions, highly turbulent flows are influenced 
by turbulent dissipation and oscillations may be partly 
or fully damped similarly to damping in present nu-
merical first order method simulations. Of course, this 
question require additional investigations.    

   Consideration of presented here and omitted vari-
ants shows, that flows are steady for sufficiently large 
jet half-angles, jets are destroying and a process of 
this destroying produces self-oscillations for middle jet 
half-angles, jets get large distance from spherical 
blunts of cylinders (this flows are not shown here) for 
sufficiently small jet half-angles. As a jet velocity or jet 
pressure or jet density decreases, a jet gets less dis-
tance from spherical blunt as a result of jet braking by a 
contrary free stream. A steady state regime takes 
place, if this distance is sufficiently small.  

  V.  Conclusions 

    Interactions of supersonic streams with blunted 
bodies, giving off supersonic jets, are studied. Previ-
ous investigations [2]-[3] allowed to find unsteady re-
gimes of these interactions at free stream Mach 

numbers, closed to 1. The Mach numbers interval 

1.1≤M  ≤1.7 of unsteady regimes is established here.  

   Significant changeability of computational results is 
a feature of this family of unsteady flows due to strong 
influence of the numerical method dissipation on dis-
turbances generation resulted from a Kelvin-Helmholtz 
instability of three contact discontinuities available in 
these flows. It may be supposed, that laminar flows 
may be close to second order method solutions, highly 
turbulent flows are influenced by turbulent dissipation 
and oscillations may be partly or fully damped similarly 
to damping in present numerical first order method 
simulations, but this question require next investiga-
tions. 

   To define more exactly regions with any flow re-
gimes in 5D space of control parameters, both CFD 
modeling and experimental studies are necessary. 
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