
Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 5 Issue 9, September - 2019 

www.jmess.org 

JMESSP13420574 2811 

An Evolutionary Algorithm for the Autonomous 
Vehicle Routing Problem under Emergency 

Evacuation 
 

Jaqueline E. Masaki
1
, Yassir A. AbdelRazig

1
, and Doreen C. Kobelo

2
 

1
Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL  

2
School of Architecture and Engineering Technology, Florida A&M University, Tallahassee, FL  

 

Abstract— One of the consistent difficulties 
faced by the existing public safety systems is to 
ensure that residents evacuate safely and timely 
during an impending disaster. The future of 
autonomous vehicles (AVs) holds promising 
results in improving and facilitating the evacuation 
process. This paper proposes a multi-objective 
evolutionary algorithm for the vehicle routing 
problem, where autonomous vehicles are used 
during emergency evacuation. The objective of the 
proposed model aims to minimize the total 
evacuation cost, which is composed of two major 
components including the travel time cost and the 
cost associated with the accident risk of evacuees. 
A case study is undertaken to test the validity of 
the model and the proposed algorithm. Three 
scenarios were created and compared by 
considering different penetration rates of AVs. In 
each scenario, 30 autonomous buses were 
designated to evacuate 2000 households using 19 
evacuation routes. The results showed that the use 
of AVs may help to reduce evacuation costs. 

Keywords— Autonomous vehicles, self-driving 
vehicles, evacuation, evolutionary algorithms, 
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I.  INTRODUCTION  

Autonomous Vehicles (AVs) represent a 
technology that promises to play an important role in 
transportation automation during natural disasters [1]. 
A shared fleet of autonomous vehicles is expected to 
save lives in the event of a large-scale evacuation [2]. 
One of the consistent difficulties faced by the existing 
public safety systems is to ensure that residents 
evacuate safely and on time during an impending 
disaster. Congestion and accidents along the 
evacuation routes occurred relatively frequently in the 
past. Application of connected and automated vehicles 
during evacuation have the potential to move people 
from one place to another efficiently by minimizing 
accident risks and reducing travel time [3] [4]. 
Considering the amount of destructions that are 
generally caused during natural disasters, these 
vehicles could monitor road conditions, plot the best 
path to a safe destination, and take the evacuees to 
the nearest evacuation shelter in time. These vehicles 
can even be more useful for people with travel-
restrictive medical conditions, elderly and those 
without cars. 

In New Orleans, over 1,400 people were killed 
during Hurricane Katrina, mostly due to lack of efficient 
transportation and proper emergency evacuation 
planning [4]. AV-enhanced evacuation could have 
deployed throughout the New Orleans region and 
dispatch systems could have calculated and optimized 
timing and order of the evacuation based on risk and 
optimal evacuation route capacity [5] [6] [7]. 
Nowadays, most of the households have access to a 
car, receive timely warnings, and are able to evacuate 
themselves. Yet, the current system still fails to 
evacuate people efficiently with low accident risks. In a 
future that includes AVs, it is important to investigate 
how they can make the population safer in case of 
approaching disasters and facilitate emergency 
evacuation. This paper focuses on the analysis of the 
Vehicle Routing Problem (VRP) using evolutionary 
algorithms [5] [8] [9]. The VRP is a complex 
combinatorial optimization problem that belongs to the 
NP-complete class. Due to the nature of the problem, it 
is not possible to use the exact methods for large 
instances of the VRP. The evolutionary algorithm 
developed in this paper will be able to provide good 
quality solutions for large instances in a reasonable 
computational time, which is critical for emergency 
evacuation planning [10] [11]. Furthermore the 
proposed algorithm accounts not only for the travel 
time cost, but also for the cost, which is associated 
with the accident risk of evacuees.  

II. PROBLEM DESCRIPTION 

This study proposes an optimization model that 
addresses the evacuation of people from affected 
areas to shelters using self-driving public 
transportation (buses). The objective is to find 
evacuation routes by minimizing the total cost 
associated with travel time and accident risk of 
evacuees. The problem involves three major steps: 1) 
estimation of the travel time and delays for individual 
evacuation road links using the actual travel times for 
roadway links; 2) calculating the accident risk using 
crash frequency and traffic volume of each evacuation 
roadway link. The crash frequency can be estimated 
from crash data if readily available, otherwise it can be 
predicted using the AASHTO’s Highway Safety Manual 
(HSM); and 3) integration of the individual objectives 
into a single comprehensive (cost) measure using the 
weighted approach and finding the preferred (i.e., the 
least cost) route using evolutionary algorithm. 
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III. MATHEMATICAL MODEL 

This section of the paper presents the VRP model 
for calculating travel time and accident risk. The 
formulation of this study is described next: 

A. Notations 

Sets: 

𝑁 = {1, … . , 𝑎} - set of nodes 

𝑉 = {1, … . , 𝑏} - set of vehicles 

𝑁 = {1, … . , 𝑐} - set of evacuation routes 

𝑖 = start node or pickup point index 

j = end node or pickup point index 

v = vehicle index 

 
Decision variable: 

𝑥𝑖𝑗
𝑣 = 1 if vehicle 𝑣 travels

 
from node 𝑖 to node 𝑗  

     = 0 otherwise 

 
Parameters: 
𝑡𝑖𝑗= traveled time from node 𝑖 to node 𝑗  

𝑎𝑖𝑗
𝑣 = accident risk from node 𝑖 to node 𝑗 

𝑞𝑗
𝑣= amount of people need to evacuate at node 𝑗 

 𝑄𝑗
𝑣= maximum capacity of vehicle 𝑣 

 𝑊𝑇= weighted factor for travel time (0.5 million) 

 𝑊𝐴𝑅 = weighted factor for accident risk (1 million 
(fatal), 0.5 million (injury)) 

 

  B.     Model Formulation 

VRP: Vehicle Routing Problem 

𝑀𝑖𝑛 [ 𝑊𝑇 ∙ ∑ ∑ ∑ 𝑡𝑖𝑗
𝑀
𝑗=1 𝑥𝑖𝑗

𝑣𝑁
𝑖=1

𝑉
𝑣=1 + 𝑊𝐴𝑅 ∙

∑ ∑ ∑ 𝑎𝑖𝑗
𝑀
𝑗=0 𝑥𝑖𝑗

𝑣 ]𝑁
𝑖=0

𝑉
𝑣=1                                              (1)                                        

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑣 = 1 𝑁

𝑖=0
𝑉
𝑣=1 ∀ 𝑗 ∈ 𝑁                                                 (2)                                                                                                                            

∑ ∑ 𝑥𝑖𝑗
𝑣 = 1 𝑁

𝑗=0
𝑉
𝑣=1 ∀ 𝑖 𝜖 𝑁                                      (3)                                                                                                                                                                                                                                                        

∑ 𝑥𝑖𝑗
𝑣 − ∑ 𝑥𝑗𝑖

𝑣 = 0𝑁
𝑗=0

𝑁
𝑖=0 ∀ 𝑖, 𝑗 𝜖 𝑁, 𝑣 𝜖 𝑉               (4)                                                                            

∑ ∑ 𝑞𝑗
𝑣𝑀

𝑗=0
𝑁
𝑖=0 𝑥𝑖𝑗

𝑣 ≤ 𝑄𝑗
𝑣 ∀ 𝑣 𝜖 𝑉                                          (5)                                       

∑ ∑ 𝑥𝑖𝑗
𝑣𝑁

𝑗=0
𝑉
𝑖=1 ≤ |𝑉| ∀𝑣 𝜖 𝑉                                       (6)                                     

∑ 𝑥0𝑗
𝑣 ≤ 1𝑀

𝑗=0  ∀ 𝑣 𝜖 𝑉                                               (7)                                                 

∑ 𝑥𝑖𝑜
𝑣 ≤ 1𝑁

𝑖=0  ∀ 𝑣 𝜖 𝑉                                               (8)                                                  

𝑥𝑖𝑗
𝑣  ∈  {0,1} ∀𝑖, 𝑗 𝜖 𝑁, ∀ 𝑣 𝜖 𝑉                                   (9)                               

The objective for VRP is to assign vehicles to the 
possible evacuation routes, moving people from 
evacuation zones to safe destinations by minimizing 
the total cost associated with travel time and accident 
risk of evacuees. Constraints sets (2) and (3) 
guarantee that the demand at each pickup node 

should be served exactly by one vehicle. Constraints 
set (4) ensures that the same vehicle arrives in node 𝑖 
must leave from the same node (flow balance at each 
point). Constraints set (5) indicates that the total 
number of people evacuated for one route should not 
exceed the maximum capacity of the vehicle. 
Constraints set (6) ensures that the total number of 
evacuation vehicles should not surpass the sum of the 
emergency vehicles that the city has. Constraints set 
(7) and (8) states that one vehicle/bus, need to be able 
to serve on one route. Constraints set (9) defines 
decision variable as binary. 

IV. SOLUTION APPROACH  

The Vehicle Routing Problem (VRP) with path 
restrictions have the NP-hard complexity; therefore, 
the exact optimization algorithms will not be able to 
obtain solutions within a reasonable computational 
time for the realistic size problem instances. To 
address this drawback, this study proposes an 
evolutionary algorithm (EA) for solving the VRP 
mathematical model [2] [6] [7] [12]. The flow chart for 
the VRP is shown in Fig. 1. 

 

Fig. 1. Solution approach flow chart 

A. Representation Chromosomes 

This study uses a three-dimensional integer 
chromosome to represent the bus ID to route to the 
household (to pick up the evacuees). Fig. 2 
demonstrates an example of a chromosome, where we 
observe that 9 households required to be evacuated 
and the city has 6 autonomous buses and with 3 
available evacuation routes [13]. 
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Route  1 1 1 1 2 2 3 3 3 

Bus ID  6 6 2 2 1 3 4 5 5 

Household 
 

2 6 7 9 1 3 4 5 8 

Fig. 2. Solution approach flow chart 

Households “2”, “6”, “7” and “9” are to be evacuated 

using route “1” with buses “6” and “2” respectively, 

while households “1” and “3” are to be evacuated 

using route 2 with buses “1” and “3”. Households “4”, 

“5”, and “8” are to be evacuated using route “3” with 

buses “4” and “5”. Each gene array includes three 

genes, representing route, bus ID and household. 

B. Initialization of Chromosomes and Population 

In this study the EA algorithm will use the 

chromosomes and initial population that are 

generated randomly.   

C. Parent Selection 

This step is very important and is used to identify 

the parents who will produce offsprings. In this study, 

binary tournament selection is proposed for parent 

selection. This type of selection chooses randomly 

two individuals from the population, and the fittest 

individual becomes a parent. The process is repeated 

several times to obtain the required number parent 

chromosomes. 

D. EA Operations 

After identifying parent chromosomes, the EA 

algorithm will apply two operators to produce the 

offsprings at a given generation: 1) crossover 

operator; and 2) mutation operator. 

Crossover: Based on the chromosome 

representation proposed in this study, the order 

crossover is selected to produce the feasible 

offsprings. An example of the crossover operation is 

illustrated in Fig. 3. 

 

Parent 1 

Route  1 1 1 1 2 2 3 3 3 

Bus ID 
 

6 6 2 2 1 3 4 5 5 

Househo
ld  

2 6 7 9 1 3 4 5 8 

 

Offspring 1 

Route 
 

1 2 1 1 2 2 3 2 3 

Bus ID 
 

3 5 2 2 1 3 4 2 6 

House
hold  

2 6 7 9 1 3 4 1 5 

 

 

 

 

Parent 2 

Route 
 

1 1 1 2 2 2 3 3 3 

Bus ID 
 

3 3 2 5 2 3 6 4 1 

House
hold  

8 2 7 6 1 3 5 4 9 

Fig. 3. An Example of a crossover operation. 

In the provided example (Fig. 3), two parent 

chromosomes are randomly selected from the 

population. Then, a segment of the chromosome from 

the first parent is copied to the first offspring 

chromosome. In the example, arrays of genes with 

bus IDs “2”, “2”, “1”, “3”, and “4” are copied from the 

first parent to the first offspring chromosome. Next, 

the order crossover operator selects the gene arrays 

with missing bus IDs from the second parent and 

copies them to the first offspring chromosome. In the 

considered example, arrays of genes with vessels “3”, 

“5”, “2” and “6” are copied from the second parent to 

the first offspring chromosome. The second offspring 

is created in a similar fashion. 

Mutation: The mutation operator that was selected 

for this study is the swap mutation. Based on the 

swap mutation operation, two alleles are picked at 

random and their positions are swapped. An example 

of the mutation operation is illustrated in Fig. 4. 

 

Before Mutation 

Route 
 

1 1 1 2 2 2 3 3 3 

Bus ID 
 

3 3 2 5 2 2 4 6 1 

House
hold  

4 2 7 6 3 1 4 7 9 

 

After Mutation 

Route 
 

1 1 1 2 2 2 3 3 3 

Bus ID 
 

3 3 1 5 2 4 2 6 2 

House
hold  

4 7 7 6 3 4 1 2 9 

Fig. 4. An Example of a mutation operation. 

In the example of a mutation operation 
demonstrated in Fig. 4, we observe that buses “2” and 
“1” originally using route “1” and “3”, switch their bus 
arrangement. Furthermore, households “2” and “7”, 
originally to be evacuated using routes “1” and “3”, are 
switched to routes “3” and “1” respectively.  

E. Fitness Function 

The fitness function of the developed EA algorithm 

is assumed to be equal to the objective function of the 

VRP mathematical model. 

F. Survivor selection 

The survivor selection or offspring selection step 
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plays an important role in the EA evolution, as it 

determines the offspring that will survive in the current 

generation and will become candidate parents in the 

next generation. In this study, generational offspring 

selection will be applied in which all offspring 

chromosomes will be moved to the next generation. 

G. Termination Criterion 

The termination criteria that will be used for this 

study will be based on the pre-specified number of 

generations.  

V. NUMERICAL EXPERIMENTS 

This section presents a detailed description of the 

numerical experiments conducted to evaluate 

effectiveness of the proposed evolutionary algorithm 

for the vehicle routing problem. Subsection V.A 

describes the case study area and the VRP model. 

Subsection V.B provides the data sets used for 

evaluation, including the map developed, assumptions 

made, and created scenarios. Three scenarios were 

evaluated: Scenario 1 - 0% penetration rate of AVs on 

traffic hence, no changes on the total travel time; 

Scenario 2 - 50% penetration rate of AVs hence, 

assume 25% percent reduction on travel time due to 

the use of autonomous buses in a mixed traffic; and 

Scenario 3 - 100% penetration rate of AVs hence, 

assume 50% percent reduction on travel time. 

Subsection V.C provides the results of the conducted 

numerical experiments comparing the three scenarios. 

The developed evolutionary algorithm was coded in 

MATLAB R2014b [14]. The numerical experiments 

were performed on a Dell Intel® Core™ i7-4790 

Processor with 16 GB of RAM. 

A. Case Study 

Hillsborough County located in Tampa, Florida was 

selected as a case study for this paper. This county 

was chosen because it was one of the counties, 

where a mandatory evacuation order was issued as a 

result of the declaration of one of the most recent and 

devastating disaster, Hurricane Irma, on September 

10, 2017. Based on the 2010 census, this county has 

a population of 1,229,226, making it the fourth most 

populous county in Florida. It has an area of 1,266 

square miles and its county seat is Tampa. The 

county has 10 major highways, including; 3 interstate 

highways; 3 U.S routes, and 4 state routes. As many 

counties in Florida, Hillsborough county needed 

individual and public assistance during evacuation. 

The overview of the case study area is given in Fig. 5. 

 

 

Fig. 5. Overview of the study area: Hillsborough County, 
Florida 

Based on the forecasted direction of Hurricane 

Irma, Hillsborough County ordered all residents in 

along the shores to evacuate. The county opened 16 

shelters for the residents in evacuation areas. In this 

paper, the future of autonomous vehicles is 

considered in order to speed hurricane evacuations 

[3]. The vehicle routing problem for this paper 

considered randomly selected households in 

evacuation areas to be evacuated to open shelters 

using autonomous buses on evacuation routes. 

B. Input Data Description 

GIS shape files of evacuation routes, shelters and 

crashes were primarily used to generate the numerical 

data for the computational experiments in this study. 

The GIS shape files were obtained from Florida 

Geographic Data Library (FGDL). Fig.6 shows the 

map with the open shelters, evacuation routes and 

randomly selected households in evacuation areas. 
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Fig. 6. Hillsborough County VPR data sets 

 

From the shape files the parameters of the VRP 

mathematical model were adopted. However, the 

information on the capacity of the shelters was 

unknown and because autonomous buses are not yet 

used the number of vehicles for this problem was 

selected randomly. Due to the nature of the problem 

modifications were made on the Figure 1. The 

following assumptions were adopted throughout the 

numerical experiments: 1) the vehicles are large 

buses operating in the region by the city and are full 

autonomous which means they operate without a 

driver and in all conditions; 2) One bus can evacuate 

people from more than one household; 3) The 

vehicles use satellite communications, real-time data 

and up-to-date maps to know the evacuation routes to 

the closest shelter and to receive real-time incident 

management and information on road and traffic 

conditions ahead; and 4) One shelter can adopt 

people from more than one household. Three 

scenarios will be developed for the VRP problem as 

explained in the beginning of this section. Under 

Scenario 1, assumes no autonomous vehicles and 

therefore no changes on the travel time; Under 

Scenario 2, 25% percent reduction on travel time due 

to the use of autonomous buses in a mixed traffic; 

and, under Scenario 3, 50% percent reduction on 

travel time due to the use of autonomous buses in full 

autonomous traffic. The assumptions were based on 

the expected reduction in travel time when using 

autonomous vehicles [2] [6] [7] [15]. 

 

Network Analyst tool in GIS was used to create a 

network dataset and find the best route using the 

network dataset. The routes from the households to 

the shelters were generated by finding the closest 

shelters [16]. The roadway shapefile and Tampa bay 

Regional Planning Model (TBRPM), were retrieved 

from the Florida Standard Urban Transportation Model 

Structure (FSUTMS). Fig.7 shows the 19 evacuation 

routes that were generated based on this analysis. 

 

 

Fig. 7. Hillsborough County evacuation routes 

 

Travel time parameters, i.e. free flow time, volume, 

capacity and delay for each route, were estimated and 

the number of crashes per year was determined. The 

aforementioned data is provided in Table I below. The 

VRP parameters adopted for this paper are shown in 

Table II. 

TABLE I.  SELECTED ROUTES IN HILLSBOROUGH 

COUNTY 

Route

ID 

Travel 

time 

(min) 

Scenar

io 1 

Travel 

time 

(min) 

Scenar

io 2 

Travel 

time 

(min) 

Scenar

io 3 

Crash_freque

cy 

(no.crashes/y

ear) 

Route 

1 

16.2

7 

12.2

0 
8.14 53 

Route 

2 

13.9

2 

10.4

4 
6.96 53 

Route 

3 

12.0

0 
9.00 6.00 49 

Route 

4 

16.2

7 

12.2

0 
8.14 53 

Route 

5 

11.0

9 
8.32 5.55 47 

Route 

6 

13.8

3 

10.3

7 
6.92 55 
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Route 

7 

11.9

9 
8.99 6.00 38 

Route 

8 

10.1

3 
7.60 5.07 29 

Route 

9 

13.3

6 

10.0

2 
6.68 271 

Route 

10 

12.3

8 
9.29 6.19 267 

Route 

11 

12.0

5 
9.04 6.03 213 

Route 

12 

13.8

1 

10.3

6 
6.91 195 

Route 

13 

12.6

7 
9.50 6.34 194 

Route 

14 

17.8

2 

13.3

7 
8.91 418 

Route 

15 

15.4

0 

11.5

5 
7.70 19 

Route 

16 

10.6

3 
7.97 5.32 233 

Route 

17 

11.3

1 
8.48 5.66 109 

Route 

18 
8.02 6.02 4.01 86 

Route 

19 

15.5

7 

11.6

8 
7.79 225 

TABLE II.  INPUTS FOR VRP  PROBLEM 

Parameter Value 

Number of Routes [19] 

Number of Buses [60] 

Number of Households [2000] 

 

Parameter tuning was conducted in this paper to 

determine parameters to be used in the algorithm. 

Table III shows the values of the parameters that were 

adopted for this study.  

TABLE III.  EA PARAMETERS   

Parameter 

Paramete

r 

Descripti

on 

Candida

te 

Values 

Selecte

d 

Values 

populationSize 
Population 

Size 

[30; 40; 

50; 60] 
60 

crossoverProbabili

ty 

Crossover 

Probability 

[0.5; 0.6; 

0.7; 0.8] 
0.5 

mutrate 
Mutation 

Rate 

[2; 4; 6; 

8] 
2 

numberofGenerati

ons 

No of 

Generatio

ns 

[300; 

500; 

1000; 

2000] 

1000 

 

C. Comparative Analysis Results 

The results presented herein are for all the three 

scenarios, described earlier in the paper. Each 

scenario was executed using the same input values 

for number of routes, number of buses and number of 

households as described in Table II. No significant 

changes in the fitness values were observed for all the 

scenarios after generation 800 as seen in Figure 8. 

However, considering reduction in travel time for 

different penetration rates of autonomous vehicles in 

traffic, the fitness values decrease as the travel time 

decreases. Hence, this proves that with the objective 

of minimizing the total evacuation cost, the use of 

autonomous vehicles may help to reduce the total 

cost. From Fig. 8, with 0% penetration rate of 

autonomous vehicles in traffic, the total evacuation 

cost is $6.3059 x 10
7 

(scenario 1), while for mixed 

traffic is $6.1045 x 10
7
 (scenario 2), and for full 

autonomous vehicles in traffic is $5.9031 x 10
7
 

(scenario 3). On average the total weighted 

evacuation cost of EA VRP with mixed traffic was 

lower by 3.2% as compared to the EA VRP with no 

autonomous vehicles. Furthermore, total weighted 

evacuation cost of EA VRP with full autonomous 

vehicles in traffic was lower by 6.4% as compared to 

the EA VRP with no autonomous vehicles. However, 

the cost savings are expected to increase drastically 

for large scale emergency evacuations (e.g., 500000 

evacuees). 

 

 
Scenario 1 

  
Scenario 2 
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Scenario 3 

Fig. 8. Convergence Patterns for VRP, EA 

VI. CONCLUSIONS AND FUTURE WORK 

This study proposes an optimization model that 

addresses the evacuation of people from evacuation 

zones to shelters using self-driving public 

transportation (buses). The objective was to assign 

the evacuating vehicles to the available evacuation 

routes, moving people to safe destinations. Due to the 

problem complexity, an evolutionary-based algorithm 

was adopted as a solution approach. Numerical 

experiments were performed to test the efficiency of 

the developed algorithm by considering an emergency 

evacuation scenario at Hillsborough County, Florida.  
The results of the numerical experiments supported 

the assumption that autonomous driving will 

potentially reduce the evacuation cost and improve 

evacuation process by reducing the total travel time of 

evacuees and accident risk. Results suggest that 

using full autonomous vehicles during evacuation 

leads to a reduction of 6.4% of the evacuation cost 

compared to manual driving. The main limitation of the 

study is related to possible assumptions bias for 

autonomous driving as AVs data are not currently 

available. 
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