A Forecasting Model Based On Combining Automatic Clustering Technique And Fuzzy Time Series

Ngheim Van Tinh
Thai Nguyen University of Technology, Thai Nguyen University
Thai Nguyen, Vietnam

Abstract—Most fuzzy forecasting methods are based on modelling fuzzy logical relationships according to the past data. In this paper, a hybrid forecasting model based on two computational approaches, fuzzy logical relationship groups and clustering technique, is presented for forecasting enrolments. Firstly, we use the automatic clustering algorithm to divide the historical data into clusters and adjust them into intervals with different lengths. Then, based on the new obtained intervals, we fuzzify all the historical data into fuzzy sets, define fuzzy logical relationships and calculate the forecasted output value for fuzzy logical relationship groups. To show the effectiveness of the proposed model. We applied the proposed model to forecast the historical enrollments of the University of Alabama. The experimental results show that the proposed method gets a higher average forecasting accuracy rate than the existing methods based on both first – order and high – order fuzzy time series.

Keywords—Fuzzy time series, forecasting, fuzzy logical relationship groups, automatic clustering, enrolments.

I. INTRODUCTION

In our daily life, forecasting activities play an important role. Therefore, many more forecasting models have been developed to deal with various problems in order to help people to make decisions, such as crop forecast [7], [8], academic enrolments [2], [11], the temperature prediction [14], stock markets[15], etc. There is the matter of fact that the traditional forecasting methods cannot deal with the forecasting problems in which the historical data are represented by linguistic values. Ref. [2,3] proposed the time-invariant fuzzy time and the time-variant time series model which use the max–min operations to forecast the enrolments of the University of Alabama. However, the main drawback of these methods is huge computation burden. Then, Ref. [4] proposed the first-order fuzzy time series model by introducing a more efficient arithmetic method. After that, fuzzy time series has been widely studied to improve the accuracy of forecasting in many applications. Ref. [5] considered the trend of the enrolment in the past years and presented another forecasting model based on the first-order fuzzy time series. Ref. [13] pointed out that the effective length of the intervals in the universe of discourse can affect the forecasting accuracy rate. In other words, the choice of the length of intervals can improve the forecasting results. Ref.[6] presented a heuristic model for fuzzy forecasting by integrating Chen’s fuzzy forecasting method [4]. At the same time, Ref. [9], [12] proposed several forecast models based on the high-order fuzzy time series to deal with the enrolments forecasting problem. In [9], the length of intervals for the fuzzy time series model was adjusted to get a better forecasted accuracy. Recently, Ref.[17] presented a new hybrid forecasting model which combined particle swarm optimization with fuzzy time series to find proper length of each interval. Ref. [19] presented a method to forecast the Taiwan Stock Exchange Capitalized Weighted Stock Index (TAIEX) based on fuzzy time series and clustering techniques. Additionally, Ref.[18] proposed a new method to forecast enrolments based on automatic clustering techniques and fuzzy logical relationships.

In this paper, we proposed a new forecasting model combining the time-variant fuzzy relationship groups and automatic clustering technique in [20]. The method is different from the approach in [4] and [17] in the way where the fuzzy relationships are created. Based on the model proposed in [9], we have developed a new weighted fuzzy time series model by combining the automatic clustering technique and time-variant fuzzy relationship groups with the aim to increase the accuracy of the forecasting model. In case study, we applied the proposed method to forecast the enrolments of the University of Alabama. Computational results show that the proposed model outperforms other existing methods based on both first – order and high – order fuzzy time series.

The remainder of this paper is organized as follows: In Section 2 provides a brief review of fuzzy time series and algorithms. In Section 3 discusses the details of the new proposed forecast model for forecasting the enrolments of the University of Alabama. Then, the computational results are shown and analyzed in Section 4. Conclusions are presented in Section 5.
II. FUZZY TIME SERIES AND CLUSTERING ALGORITHM

In this section, we briefly review the basic concepts of fuzzy time series (FTS) and the automatic clustering algorithm.

A. Fuzzy Time Series Definitions

In [2], Song and Chissom proposed the definition of fuzzy time series based on fuzzy sets. Let \(U = \{ u_1, u_2, \ldots, u_n \} \) be an universal set; a fuzzy set \(A \) of \(U \) is defined as \(A = \{ f_a(u_1)/u_1 + \ldots + f_a(u_n)/u_n \} \), where \(f_a \) is a membership function of a given set \(A \). Let \(f_a : U \rightarrow [0, 1] \), \(f_a(u_i) \) indicates the grade of membership of \(u_i \); the fuzzy set \(A \), \(f_a(u_i) \in [0, 1] \), and \(1 \leq i \leq n \). General definitions of fuzzy time series are given as follows:

Definition 1: Fuzzy time series

Let \(Y(t) \) \((t = \ldots, 0, 1, 2, \ldots) \), a subset of \(\mathbb{R} \), be the universe of discourse on which fuzzy sets \(f_i(t) \) \((i = 1, 2, \ldots) \) are defined and if \(F(t) \) be a collection of \(f(t) \) \((i = 1, 2, \ldots) \). Then, \(F(t) \) is called a fuzzy time series on \(Y(t) \) \((t = \ldots, 0, 1, 2, \ldots) \).

Definition 2: Fuzzy logical relationship

If there exists a fuzzy logical relationship \(R(t, t) \), such that \(F(t) = F(t) \cdot R(t, t) \), where \(\cdot \) is an arithmetic operator, then \(F(t) \) is said to be caused by \(F(t) \). The relationship between \(F(t) \) and \(F(t-1) \) can be denoted by \(F(t) \rightarrow F(t-1) \). Let \(A_i = F(t) \) and \(A_j = F(t-1) \), the relationship between \(F(t) \) and \(F(t-1) \) is denoted by fuzzy logical relationship \(A_i \rightarrow A_j \) where \(A_i \) and \(A_j \) refer to the current state or the left-hand side and the next state or the right-hand side of fuzzy time series.

Definition 3: Order fuzzy time series

Let \(F(t) \) be a fuzzy time series. If \(F(t) \) is caused by \(F(t-1) \), \(F(t-2), \ldots, F(t-\lambda+1) \) \(F(t-\lambda) \) then this fuzzy relationship is represented by \(F(t-\lambda), \ldots, F(t-2), F(t-1) \rightarrow F(t) \) and is called an \(\lambda \)-order fuzzy time series.

Definition 4: Fuzzy Relationship Groups (FRG)

Fuzzy logical relationships in the training datasets with the same fuzzy set on the left-hand-side can be further grouped into a fuzzy logical relationship groups. Suppose there are relationships such that

\[
A_i \rightarrow A_j \\
A_i \rightarrow A_k \\
\ldots
\]

So, these fuzzy logical relationships can be grouped into the same FRG as \(A_i \rightarrow A_j, A_k \ldots \)

B. Forecasting Model Based on FTS

The main steps for the FTS forecasting algorithm based on TV-FRGs is shown in the following algorithm:

Step 1: Partition the universe of discourse into equally lengthy intervals.

Step 2: Define fuzzy sets on the universe of discourse.

Step 3: Fuzzify all historical data

Step 4: Identify the fuzzy logical relationships

Step 5: Establish the fuzzy logical relationship groups according to Definition 5.

Step 6: Defuzzify and calculate the forecasted output value.

C. An Automatic Clustering Algorithm

In this section, we briefly summarize an automatic clustering algorithm to cluster numerical data into intervals. The algorithm is introduced in [20]. The algorithm is composed of the main following steps:

Step 1: Sort the numerical data in an ascending sequence having \(n \) different numerical data.

\[d_1, d_2, d_3, \ldots, d_n \]

where \(d_1 \) is the smallest datum among the \(n \) numerical data, \(d_n \) is the largest datum among the \(n \) numerical data, and \(1 \leq i \leq n \).

Step 2: Put each numerical datum into a cluster, show as follows: \(\{d_1, d_2, d_3, \ldots, d_1, d_2, \ldots, d_n\} \).

Where the symbol ‘()’ denotes a cluster, \(d_1 \) is the smallest datum among the \(n \) numerical data, \(d_n \) is the largest datum among the \(n \) numerical data and \(1 \leq i \leq n \).

Step 3: Based on the clustering results obtained in Step 2, adjust these clusters into contiguous intervals.

III. FORECASTING MODEL BASED ON AUTOMATIC CLUSTERING ALGORITHM AND FUZZY TIME SERIES

In this section, we present a hybrid method for forecasting enrolments based on the automatic clustering algorithm and fuzzy time series. The historical data of enrolments of the University of Alabama are introduced in article[18]. The proposed model is now presented as follows:

Step 1: Partition the universe of discourse into \(n \) intervals.

In this step, we apply the automatic clustering algorithm [20] to cluster the historical enrolments into clusters and adjust the clusters into \(21 \) intervals with different lengths. Then, calculate the midpoint of each interval as shown in Table 2.

<table>
<thead>
<tr>
<th>No</th>
<th>Intervals</th>
<th>Midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[13055, 13354]</td>
<td>13204.5</td>
</tr>
<tr>
<td>2</td>
<td>[13354, 13862]</td>
<td>13608</td>
</tr>
<tr>
<td>3</td>
<td>[13862, 14166]</td>
<td>14041</td>
</tr>
<tr>
<td>4</td>
<td>[14166, 14397]</td>
<td>14281.5</td>
</tr>
<tr>
<td>5</td>
<td>[14397, 14995]</td>
<td>14696</td>
</tr>
<tr>
<td>6</td>
<td>[14995, 15042]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>[15042, 15244]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>[15244, 15446]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>[15446, 15648]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>[15648, 15850]</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>[15850, 16052]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>[16052, 16254]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>[16254, 16456]</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>[16456, 16658]</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>[16658, 16860]</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>[16860, 17062]</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>[17062, 17264]</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>[17264, 17466]</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>[17466, 17668]</td>
<td>18923</td>
</tr>
<tr>
<td>20</td>
<td>[17668, 17870]</td>
<td>19149</td>
</tr>
<tr>
<td>21</td>
<td>[17870, 19337]</td>
<td>19332.5</td>
</tr>
</tbody>
</table>

Step 2: Define fuzzy sets \(A_i \) where \(1 \leq i \leq n \).

Each interval in Step 1 represents a linguistic variable of enrolment. For 21 intervals, there are 21 linguistic variables. Each linguistic variable represents...
a fuzzy set A_i (1 ≤ i ≤ 21) and its definition is described in Eq. (1).

$$A_i = \sum_{j=1}^{21} \frac{a_{ij}}{u_j} = \begin{cases}
1 & \text{if } j == i \\
0.5 & \text{if } j == i-1 \text{ or } j == i+1 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

where a_{ij} is $[0,1]$, 1 ≤ i ≤ 21, and 1 ≤ j ≤ 21. The value of a_{ij} indicates the grade of membership of u_j in the fuzzy set A_i.

Step 3: Fuzzify variations of the historical enrolment data.

In order to fuzzify all historical data, it’s necessary to assign a corresponding linguistic value to each interval first. The simplest way is to assign the linguistic value with respect to the corresponding fuzzy set that each interval belongs to with the highest membership degree. For example, the historical enrolment of year 1975 is 15460 which falls within u_9 (15331, 15603), so it belongs to interval u_9 Based on Eq. (1). Since the highest membership degree of u_9 occurs at A_9, the historical time variable $F(1975)$ is fuzzified as A_9. A complete overview of fuzzified enrolments is shown Table 3.

Step 4: Identify the fuzzy logical relationships

Relationships are identified from the fuzzified historical data. So, based on Table 3 and according to Definition 2, we get first – order fuzzy logical relationships are shown in Table 4; where the fuzzy logical relationship $A_i \rightarrow A_k$ means “If the enrolment of year i is A_i, then that of year $i+1$ is A_k”, where A_i is called the current state of the enrolment, and A_k is called the next state of the enrolments.

Step 5: Create all FRGs

In [4], all the fuzzy relationship having the same fuzzy set on the left-hand side or the same current state can be put together into one fuzzy relationship group. But, according to the Definition 5, we need to consider the appearance history of the fuzzy sets on the right-hand side too. Therefore, only the fuzz sets on the right hand side appearing before the left-hand side of the relationship group is taken into the same fuzzy logic relationship group. Thus, from Table 4 and based on Definition 5, we can obtain 21 fuzzy logical relationship groups shown in Table 5.

Step 6: Defuzzify and calculate the forecasting output value.

Calculate the forecasted output at time t by using the following rules:

Rule 1: If the fuzzified enrolment of year $t-1$ is A_i and there is only one fuzzy logical relationship in the fuzzy logical relationship group whose current state is A_i shown as follows: $A_i(t-1) \rightarrow A_k(t)$, then the forecasted enrolment of year t is m_k, where m_k is the midpoint of the interval u_k and the maximum membership value of the fuzzy set A_k occurs at the interval u_k.

Rule 2: If the fuzzified enrolment of year t -1 is A_i and there are the following fuzzy logical relationship group whose current state is A_i shown as follows:

$$A_i(t-1) \rightarrow A_{i1}(t1), A_{i2}(t2), A_{ip}(tk)$$

then the forecasted enrolment of year t is calculated as follows:

$$\text{forecasted} = \frac{1\times m_{i1}+2\times m_{i2}+3\times m_{ip}+\cdots+p\times m_{ip}}{1+2+\cdots+p}$$

where m_{i1}, m_{i2}, m_{ip} are the middle values of the intervals u_{i1}, u_{i2} and u_{ip} respectively, and the maximum membership values of $A_{i1}, A_{i2}, \ldots, A_{ip}$ occur at intervals $u_{i1}, u_{i2}, \ldots, u_{ip}$ respectively. From Tables 3 and 5 and based on the Principles in Step 5, we can forecast the enrolments of the University of Alabama from 1971s to 1992s by the proposed method. For example, assume that we want to forecast the enrolment of years 1975 and 1983 are calculated as follows:

$$[F(t)=F(1975)], \text{From Table 3, we can see that the fuzzified enrolments of years F(t-1)= F(1974) is } A_9.$$

From Table 5, we can see that there is a fuzzy logical relationship $A_9(t-1) \rightarrow A_9(t)$ in Group 4 and the maximum membership value of the fuzzy set A_9 occurs at the interval u_9. Based on rule 1, the forecasted enrolment of year 1975 can be calculated as follows:

$$\text{Forecasted} = m_9 = \frac{15331+15603}{2} = 15467$$
[F(t)=F(1983)]. From Table 3, we can see that the fuzzified enrolments of years F(t-1)= F(1982) is A9. From Table 5, we can see that there is a fuzzy logical relationship $A_9(t - 1) \rightarrow A_9(t)$; $t < t$ in Group 13 and the maximum membership value of the fuzzified enrolments of years $F(t)$ occurs at the intervals u_8 and u_9, respectively. Based on rule 2, the forecasted enrolment of year 1993 can be calculated as follows:

$$\text{Forecasted} = \sum \frac{1}{n} m_8 + \frac{1}{n} m_9 = \sum \frac{15331 + 15603}{2} = 15247$$

$$m_8 = \sum \frac{15163 + 15331}{2} = 1539.6$$

In the same way, we can get the forecasted enrolments of the other years of the University of Alabama from 1971 to 1992 based on the first-order fuzzy time series, as listed in Table 6.

Table 6: Forecasted enrolments of the proposed method using the first-order FTS.

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual</th>
<th>Fuzzified</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>13055</td>
<td>A1</td>
<td>Not forecasted</td>
</tr>
<tr>
<td>1972</td>
<td>13563</td>
<td>A2</td>
<td>13608</td>
</tr>
<tr>
<td>1973</td>
<td>13867</td>
<td>A3</td>
<td>14014</td>
</tr>
</tbody>
</table>

To measure the forecasted performance of proposed forecasting method, the mean square error (MSE) is employed as an evaluation criterion to represent the forecasted accuracy. The MSE value is computed as follows:

$$\text{MSE} = \frac{1}{N} \sum_{i=1}^{n} (F_i - R_i)^2$$

Where, R_i notes actual data on date i, F_i forecasted value on date i, n is number of the forecasted data

IV. EXPERIMENTAL RESULTS

The performance of the proposed method will be compared with the existing methods, such as the SCI model [2], the C96 model [4], the H01 model [5], CC06F model [11] and HPSO model [17] based on the enrolment of Alabama University data from 1971 to 1992. The compared results are shown in Table 7.

Table 7: A comparison of the forecasted results of our proposed model with the existing models with first-order of the FTS series under different number of intervals.

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual data</th>
<th>SCI</th>
<th>C96</th>
<th>H01</th>
<th>CC06F</th>
<th>HPSO</th>
<th>Proposed model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>13055</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>13714</td>
<td>13555</td>
<td>13608</td>
</tr>
<tr>
<td>1972</td>
<td>13563</td>
<td>14000</td>
<td>14000</td>
<td>14000</td>
<td>14880</td>
<td>14711</td>
<td>14696</td>
</tr>
<tr>
<td>1973</td>
<td>13867</td>
<td>14000</td>
<td>14000</td>
<td>14000</td>
<td>14880</td>
<td>14711</td>
<td>14696</td>
</tr>
<tr>
<td>1974</td>
<td>14696</td>
<td>14000</td>
<td>14000</td>
<td>14000</td>
<td>14880</td>
<td>14711</td>
<td>14696</td>
</tr>
<tr>
<td>1990</td>
<td>19328</td>
<td>19000</td>
<td>19000</td>
<td>19000</td>
<td>19300</td>
<td>19340</td>
<td>19333</td>
</tr>
<tr>
<td>1991</td>
<td>19337</td>
<td>19000</td>
<td>19000</td>
<td>19000</td>
<td>19149</td>
<td>19340</td>
<td>19333</td>
</tr>
<tr>
<td>1992</td>
<td>18876</td>
<td>19000</td>
<td>19000</td>
<td>19000</td>
<td>19149</td>
<td>19014</td>
<td>19060</td>
</tr>
<tr>
<td>MSE</td>
<td>423027</td>
<td>407507</td>
<td>226611</td>
<td>35324</td>
<td>22965</td>
<td>20828</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 shows a comparison of MSE value according to Eq.(2) of the proposed model based on the first-order fuzzy time series with different number of intervals. The forecasting accuracy is computed by (3) as follows.

$$\text{MSE} = \frac{\sum_{i=1}^{n}(F_i-R_i)^2}{N} = 20828$$

From Table 7, we can see that the proposed method has a smaller MSE value than SCI model [2], the C96 model [4], the H01 model [5], the CC06F model [11], the HPSO model [17] for forecasting enrolments of the University of Alabama. To be clearly visualized, Fig.1 displays the forecasting results of the H01 model, the CC06F model, the HPSO model and the our proposed method. The trend of the enrolment forecasting based on the first-order of the fuzzy time series in comparison to the actual enrollment are shown as follows.
The trend of the curves in Fig.1 indicates the our model is still stable and is close to the actual enrolment of students each year, from 1972s to 1992s for the first-order FTS model.

Furthermore, to demonstrate the effectiveness of the proposed model based on high-order FTS, three forecasting models are presented in articles [17, 21, 22] which are selected to be compared with proposed model. The forecasted errors by MSE value of all models are listed in Table 8.

From Table 8, it is obvious that proposed model significantly outperforms the models [17, 21, 22] based on all orders of fuzzy logical relationships and obtains the smallest MSE value of 38.3 for the 7th-order fuzzy time series.

Table 8: A comparison of the MSE of the proposed model with it's counterparts based on high FTS

<table>
<thead>
<tr>
<th>Models</th>
<th>3rd-order</th>
<th>4th-order</th>
<th>5th-order</th>
<th>6th-order</th>
<th>7th-order</th>
<th>8th-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model [21]</td>
<td>208.79</td>
<td>142.26</td>
<td>143.31</td>
<td>147.14</td>
<td>105.02</td>
<td>124.48</td>
</tr>
<tr>
<td>Model [17]</td>
<td>152.47</td>
<td>148.14</td>
<td>112.24</td>
<td>122.68</td>
<td>103.61</td>
<td>108.37</td>
</tr>
<tr>
<td>Model [22]</td>
<td>70</td>
<td>59.4</td>
<td>57.4</td>
<td>52.2</td>
<td>50.2</td>
<td>57.6</td>
</tr>
<tr>
<td>Proposed model</td>
<td>62.6</td>
<td>43.2</td>
<td>41.6</td>
<td>39.5</td>
<td>38.3</td>
<td>40.5</td>
</tr>
</tbody>
</table>

The fuzzy logical relationships and the lengths of intervals are two critical factors that affect forecasting accuracy of model. In this paper, we have proposed a new forecasting method in the fuzzy time series model based on the fuzzy logical relationship groups and the automatic clustering techniques. In this forecasting model, we tried to classify the historical data of Alabama University into clusters by the automatic clustering techniques and then, adjust the clusters into intervals with different lengths. We apply the proposed method to forecast the enrollments of the University of Alabama using the one-factor first-order fuzzy time series and the one-factor high-order fuzzy time series, respectively. From the experimental results shown in Tables 7-8 and Fig.1, we can see that the proposed method gets higher average forecasting accuracy rates than the existing methods due to the fact that the proposed method gets smaller mean square errors than the existing methods for forecasting the enrollments.

Although this paper shows the superior forecasting capability compared with existing forecasting models; but the proposed model is only tested by the enrolment data. we can apply proposed model to deal with more complicated real-world problems for decision-making such as weather forecast, crop production, stock markets, and etc. That will be the future work of this research.

REFERENCES

