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Abstract—This paper concerns the study of the 
numerical approximations for the following 
boundary value problem.: 

0
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Where : (0, ) (0, )f     is
1C convex 

nondecreasing function, 
00

lim ( ) , ,
( )s

ds
f s

f s




    

for any positive real  . The initial datum 
2 ,

0 0([0,1]), (0) 0u C u   and
,

0 (1) 0,u  The 

potential 
1 , ,([0,1]), ( ) 0, (0,1), (0) 0, (1) 0.c C c x x c c       

We find some conditions under which the 
solution of a semidiscrete form of the above 
problem quenches a finite time and estimate its 
semidiscrete quenching time. We also the 
semidiscrete quenching time converges to the 
real one when the mesh size goes to zero. A 
similar study has been also investigated taking a 
discrete form of the above problem. Finally, we 
give some numerical experiments to illustrate our 
analysis. 

AMS subject classification (2000): 35B40, 
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1. INTRODUCTION 

Consider the following boundary value problem 

( , ) ( , ) ( ) ( ( , )), (0,1), (0, ) (1)

(0, ) 0,       (1, ) 0, (0, )                (2)

( ,0) ( ) 0, [0,1]                   3)
0

(

u x t u x t c x f u x t x t T
t xx

u t u t t T
x x

u x u x x

    



  


  
Where : (0, ) (0, )f     is 

1C  non decreasing 

function, and 
1C  convexe function,

0 ( )

ds

f s



   for 

any positve real  . 
0

lim ( ) ,
s

f s


    

1 , ,

0

,([0,1]), ( ) 0, (0,1), (0) 0, (1) 0, (0) 0,c C c x x c c u     

  

and 
, (1) 0,u   the initial data 

2

0 ([0,1]),u C  

 0 0,u x   (0,1),x   

,,

0 0( ) ( ) ( ( )) 0, (0,1)u x c x f u x x    (4) 

,

0 ( ) 0, (0,1)u x x   (5) 

, ,

0 0(0) 0, (1) 0.u u   (6) 

Here  0,T  is the maximal time interval on which 

the solution u of (1)-(3) exist. The time T may be finite 
or infinite. When T is finite, then we say that the 
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solution u of (1)-(3) develops a singularity in a finite 

time , namely, lim ( ) 0,min
t T

U t


   

Where 0 1( ) ( , ).min xU t min U x t    

In this last case, we say that the solution u of (1)-
(3) quenche in a finite time and the time T is called the 
quenching of the solution u. 

The theorical study of solution for semi linear heat 
equations which quench in finite time has been the 
subject of investigation of many authors see [2], [7], 
[11]- [13], [21], [22], [18], [30], and the reference of 
classical solution has been proved and this solution is 
unique. In addition, it is shown that if the initial data at 
(3) satisfies 

,,

0 0 0( ) ( ) ( ) ( ), [0,1]q qu x c x u x Bu x x       

Where (0,1]B  and  0q   , then the classical 

solution u of (1)-(3) Quenches in afinite time T and we 
have the following estimate  

1 1

0 1 0 0 1 0min ( ( )) min ( ( ))
,

1 ( 1)

q q

x xu x u x
T

q B q

 

    
 

  

1 1 1 1

1 1 1 1

0 1( ( 1)) ( ) min ( ) ( 1) ( )q q q q

xB q T t t q T t   

      

  

(See, For in stance ([7], [11], [12])). 

In this article, we are interested in the numerical 
study of the phenomenon of quenching. Our aim is to 
build a semidiscrete scheme where solution obeys the 
property of the continuous one. In order to facilitate 
our discussion, let us notice that the first condition in 
(4) allows the solution u  to attain its minimum at the 

point 0,x   and the second one permits the solution 

u  to decrease with respect to the second variable. 

The hypotheses (5) are compatibility condition which 
ensure the regularity of the solution. 

This paper is organized as follows. In the next 
section, we give some results about the discrete 
maximum principle. In the third section, under some 
conditions, we prove that the solution of a 
semidiscrete form of (1) --(3) quenches in a finite  

time and estimate its semidiscrete quenching time. 
In the fourth section, we prove the convergence of the 
semidiscrete quenching time. In the fifth section, we 
study the results of sections 3 and 4 taking a discrete 
form of (1) --(3). Finally, in the last section, we give 
some numerical results to illustrate our analysis. 

2-  Properties of semi discrete problem  

We start our study by the construction of a 

semidiscrete scheme as follows. Let I  be a positive 

integer, and let
1

.h
I

  Define the grid 

,0 ,ix ih i I    and approximate the solution 

(0) 0,0 ,i iU i I     u  of the problem (1)--(3) 

by the solution 
0 1( ) ( ( ), ( ), , ( ))T

h IU t U t U t U t   of the 

following semidiscrete equations  

( ) 2 ( ) ( ( )),0 , (0, ),
dU t hi U t f U t i I t Tqi i idt

      

 (7) 

( ) 1, (0, ),hU t t TqI
   (8)  

(0) 0,0 ,U i I
i i

     (9)  

Where 

2 1 1

2

( ) 2 ( ) ( )
( ) ,1 1,i i i

i

U t U t U t
U t i I

h
   

      

where 0, 0i i     

2 21 0 1
0 2 2

2 ( ) 2 ( ) 2 ( ) 2 ( )
( ) , ( ) I I

I

U t U t U t U t
U t U t

h h
  

 
   . (10) 

i  and i  are approximations of ( )ic x  and

 0 ,iu x  respectively. There is another motivation 

wich has cited our choice, one may remark our  

sheme, we have not chosen ( )i ic x   and 

0 .( )u x
i i

   The motivation to give the inital data 

and the potential of this manner is two fold. Firstly, in 
a lot of situations, it is difficult to have either the exact 
value of the potential or that of the initial data. It is the 
case when one of there is, for instance, the solution of 
a complicated ordianry differential equation. Secondly 
we want to study the behavior of the quenching time 
when one pertubs slightly either the potential or the 
initial datum. 

Here (0, )h

qT  is the maximal time interval on which 

where 
inf 0( ) min ( ).h i I iU t U t ‖ ‖   

When the time 
h

qT  is finite, we say that the solution 

( )hU t  of (7)-(9) quenches in a finite time and the time 

h

qT  is called the quenching time of the solution 

 .hU t   

Definition 2.1  

We say that the ( )hU t solutionof (7)-(9) quenches 

in a finite time if there exist a finite time 
h

qT  such that 

( ) 0,minU t   for (0, )h

qt T  but lim ( ) 0,
h
q

hmin
t T

U t


  

where 0 1( ) ( ).hmin x iU t min U t    
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The time 
h

qT  is called the quenching time of the 

solution  .hU t   

The following lemma is a semidiscrete form of the 
maximum principle. 

Lemma 2.1 

Let 
0 1( ) ([0, ), )I

h t C T   and let 

1 1([0, ), )I

hV C T   be such that 

( )
2 ( ) ( ) ( ) 0,0 , (0, ),

dV t
i V t t V t i I t T

i i idt
        

(11)  

(0) 0,0iV i I    . (12)  

Then ( ) 0,0 , (0, ).iV t i I t T      

Proof: 

Let 0T  be any quantity satisfying the inequality 

0T T and define the vector ( ) ( )t

h hZ t e V t  

where   is such that 

0( ) 0 for 0 , [0, ].i t i I t T        

Set 
00 infmin ( ) .t T hm Z t  ‖ ‖  Since ( )hZ t  is a 

continuous vector on the compact 0[0, ]T  , there exist 

0 {0,..., }i I  and 0 0[0, ]t T such that
0 0( )im Z t  . 

We observe that 

0 0 00 0 0

0

( ) ( ) ( )
lim 0,

i i i

k

dZ t Z t Z t k

dt k

 
   (13) 

0 0 0

0

1 0 0 1 02

0 2

( ) 2 ( ) ( )
( ) 0.

i i i

i

Z t Z t Z t
Z t

h


  
   

(14) 

Since 
0 0 0 00 0 1 0 0( ) ( ), ( ) ( ),i i i iZ t Z t k Z t Z t    and 

0 01 0 0( ) ( ).i iZ t Z t   From(11), we obtain the following 

inequality 

0

0 0 0

0 2

0 0 0

( )
( ) ( ( ) ) ( ) 0.

i

i i i

dZ t
Z t t Z t

dt
       

(15) 

We deduce from (13)-(15) that 

0 00 0( ( ) ) ( ) 0i it Z t    , which implies that

0 0( ) 0iZ t   . Therefore, ( ) 0hV t   for 0[0, ]t T  and 

the proof is complete.   

Another form of the maximum principle for 
semidiscrete equations is the following comparison 
lemma. 

Lemma 2.2 

Let 
0 ( , ).f C   If 

1 1, ([0, ), )I

h hV W C T   are such that 

2

2

( )
( ) ( ( ), )

( )
( ) ( ( ), ),   0 , (0, ),

i
i i

i
i i

dV t
V t f V t t

dt

dW t
W t f W t t i I t T

dt





  

    

  

(0) (0),0 ,i iV W i I    then ( ) ( ),i iV t W t  

0 , (0, ).i I t T     

Proof: 

Let ( ) ( ) ( )h h hZ t W t V t   and let 0t   

be the first (0, )t T  such that ( ) 0hZ t   for 

0[0, )t t  but 
0 0( ) 0iZ t   for a certain 0 {0,..., }i I  . 

We see that 

0 0 00 0 0

0

( ) ( ) ( )
lim 0,

i i i

k

dZ t Z t Z t k

dt k

 
   

0

2

0( ) 0.iZ t   Therefore, we have 

0

0 0 0

0 2

0 0 0 0 0

( )
( ) ( ( ), ) ( ( ), ) 0,

i

i i i

dZ t
Z t f W t t f V t t

dt
   

 which contradicts the first strict inequality of the 
lemma and this ends the proof .   

Lemma 2.3 

Let hU  be the solution of (7)-(9). Assume that the 

initial data at (9) satisfies 1,1 1i i I     . Then, 

we have ( ) 1, (0, )h

i qU t t T  .  

Proof: 

Let 
0 (0, )h

qt T  be the first time (0, )h

qt T  such 

that ( ) 1iU t   , for 01 1, (0, )i I t t     such that

( ) 1iU t   , for 01 1, (0, ),i I t t     but 0( ) 1jU t   

for certain {1,..., 1}j I  . We have 

0 0 0

0

( ) ( ) ( )
lim 0

j j j

k

dU t U t U t k

dt k

 
  and 

1 0 0 1 02

0 2

( ) 2 ( ) ( )
( ) .

j j j

j

U t U t U t
U t

h


  
   

Which implies that 

0 2

0 0

( )
( ) ( ( )) 0.

j

j j j

dU t
U t f U t

dt
     But, this 

contradicts (7) and the proof is complete.   
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3-  Semi discrete quenching solutions 

In this section, under some assumptions,we show 

that the solution hU  of (7)--(9) quenches in a finite 

time and estimate its semidiscrete quenching time.  

We need the following result about the operator 
2 . 

Lemma 3.1 

Let 
1I

hU   be such that 0hU  . Then, we 

have 

2 2( ( )) ( ) , 0 .i i if U f U U i I      

Proof: 

Applying Taylor's expansion, we find that 

2( )
2 2 ''1( ( )) ( ) ( )

2

2( )
''1 ( ), 0 ,

2

U U
iif U f U U f

i i i i
h

U U
ii f i I

i
h

  




 


  

  

where i  is an intermediate value between iU  

and 
1

U
i

 , i  the one between 
1

U
i

 and

, , ,
1 1 1 1 0

,
0

U U U U U
i I I

   
  

.
I I

   Use the fact that 0hU   to complete the 

rest of the proof.  The statement of the result about 
solutions which quench in a finite time is the following. 

Theorem 3.1 

Let hU  be the solution of (7)--(9) and assume that 

there exists a positive constant (0,1]A  and the 

initial data at (9) satisfies 

.2 ( ) ( ),0f Af i I
i i i i

          (16) 

Then, the solution hU  quenches in a finite time 

h

qT  and we have the following estimate 

0

1
.

( )

h infh

q

d
T

A f

 


 

‖ ‖

  

Proof: 

Since (0, )h

qT  is the maximal time interval 

on which 
inf( ) 0,hU t ‖ ‖ our aim is to show that 

h

qT  is finite and satisfies the above inequality. 

Introduce the vector ( )hJ t  defined as follows 

( )
( ) ( ( )),  0 .i

i i

dU t
J t Af U t i I

dt
      

A straightforward calculation gives 

2 2( ) ( ( ))

2( ( ( ))) ,0 .

dJ dU dUdi i iJ U Af U t
i i idt dt dt dt

A f U t i I
i i

 



   

  

  

From Lemma 3.1, we have 

2 2( ( )) ( ) ,0 ,f U f U U i I
i i i

      

 which implies that 

.

2 2( )

2( )( ),0

dJ dUdi iJ U
i idt dt dt

dU
iAf U U i I

i idt

 



   

   

  

Using (7), we arrive at 

2 ( ) ,

0 , (0, ).

dJ
i J f U J

i i i idt

hi I t Tq

    

  

 

From (16), we observe that (0) 0hJ  . We deduce 

from Lemma 2.1 that ( ) 0hJ t   for (0, )h

qt T , which 

implies that 

( )
( ( )), 0 , (0, ).hi

i q

dU t
Af U t i I t T

dt
       

These estimates may be rewritten in the following 

form ,0 .
( )

i

i

dU
Adt i I

f U
     Integrating 

the above inequalities over the interval ( , )h

qt T , we 

get 

.
( )1

, 0
0 (

 
)

U t dh iT t i Iq A f




      

Using the fact that 
0inf (0)h iU ‖ ‖  for a 

certain 0 {0,..., }i I  and taking 0t   in (18), we 

obtain the desired result.  

Remark 3.1  

The inequalities (18) imply that 

0 inf( )

0 0
0

1
(0, )

( )

hU t
h h

q q

d
T t for t T

A f




  

‖ ‖

 , 

and 
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inf( ) ( ( )) (0, ),h h

h q qU t H A T t for t T  ‖ ‖   

where ( )H s  is the inverse of the function 

0
( ) .

( )

s d
F s

f




    

Remark 3.2 

Let hU  be the solution of (7)-(9). Then, we have 

0

1
,

( )

hh

q

h

d
T

f

 

 

 
‖ ‖

‖ ‖
 and 

inf( ) ( ( )) (0, ).h h

h h q qU t H A T t for t T   ‖ ‖ ‖ ‖

 To prove these estimates, we proceed as follows. 

Introduce the function ( )v t  defined as follows 

inf( ) ( )hv t U t‖ ‖  for [0, )h

qt T  . Let
1 2, [0, )h

qt t T  . 

Then, there exist 1 2, {0,..., }i i I  such that 

11 1( ) ( )iv t U t  and
22 2( ) ( )iv t U t . We observe that 

( ) ( ) ( ) ( )
2 1 2 1

2 2

( )
2

2( ) ( ),
2 1 2 1

v t v t U t U t
i i

dU t
i

t t o t t
dt

   

  

 

( ) ( ) ( ) ( )
2 1 2 1

1 1

( )
1

1( ) ( ),
2 1 2 1

v t v t U t U t
i i

dU t
i

t t o t t
dt

   

  

  

which implies that ( )v t  is Lipschitz continuous. 

Further, if 2 1t t , then 

.

( )
( ) ( ) 2

2 1 2 (1)

2 1
2 ( ) ( ( )) (1)

2 2
2 2 2

dU t
iv t v t

o
t t dt

U t f U t o
i i i

 


  



 

  

Obviously, 

2

2

2( ) 0iU t  . Letting 1 2t t , and using the fact 

that 
2

,i hB ‖ ‖ we obtain 

( )
( ( ))h

dv t
f v t

dt
   ‖ ‖  for (0, )h

qt T  

Or equivalently 
( ( ))

h

dv
dt

f v t
   ‖ ‖  for 

(0, )h

qt T . Integrate the above inequality over 

( , )h

qt T  to obtain
( )

0

1

( )

v t
h

q

h

d
T t

f



 

  ‖ ‖
. 

Since
inf( ) ( )hv t U t‖ ‖ , we arrive at 

( )1 inf
0 ( )

U t dh hT tq f
h




  



‖ ‖

‖ ‖
 and 

the second estimate follows. To obtain the first one, it  

suffices to replace t by 0 in the above inequality 

and use the fact that 
inf inf(0)h hU ‖ ‖ ‖ ‖ . 

Remark 3.3 

If ,0i i I     , where   is a positive 

constant, then one may take 1A  . It may imply that 
the potential equals to 1. In this case, 

1 11
1 1

( ) ( 1) ( )
inf1

(0, ).

p
p ph hT and U t p T tq qhp

hfor t Tq




 
   





‖ ‖

  

4-  Convergence of the semidiscrete 
quenching time 

In this section, under some assumptions, we show 
that the solution of the semidiscrete problem 
quenches in a finite time and its semidiscrete 
quenching time converges to the real one when the 
mesh size goes to zero. We denote 

( ( ),..., ( )) , ( )
0

( ( , ),..., ( , ))
0

Tc c x c x u t
Ih h

Tu x t u x t
I

 
  

and
0( ) max | ( ) | .h i I iU t U t  ‖ ‖   

In order to obtain the convergence of the 
semidiscrete quenching time, we firstly prove the 
following theorem about the convergence of the 
semidiscrete scheme. 

Theorem 4.1 

Assume that the problem (1)-(3) has a solution 
4,1([0,1] [0, ])u C T   such that 

 [0, ] minmin ( ) 0.t T u t  ñ  Suppose that the 

potential at (7) and the initial data at (9) satisfy 

(0) (1) 0,h hu o as h   ‖ ‖  (19) 

(1) 0.h hc o as h   ‖ ‖  (20) 
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Then, for h sufficiently small, the problem (7)-(9) 

has a unique solution 
1 1([0, ], )I

hU C T   such 

that the following relation holds 

2

0max 0( (0) ) 0.t T h h h hc u h as h        ‖ ‖ ‖ ‖

  

Proof: 

Let 0K   and 0L  be such that 

, ( ) and
12 2

( 1) ( ) .
2

xxxx

h

u
K f K

c f L









 

  

‖ ‖

‖ ‖

 (21) 

The problem (7)-(9) has for each h , a unique 

solution
1 1([0, ), )h I

h qU C T  . Let 

( ) min{ , }h

qt h T T  be the greatest value of 0t   

such that 

( ) ( )
2

h hU t u t  
ñ

‖ ‖  for (0, ( ))t t h . (22) 

The relation (19) implies that ( ) 0t h   for h

sufficiently small. By the triangle inequality, we obtain 

inf inf( ) ( ) ( ) ( )h h h hU t u t U t u t   ‖ ‖ ‖ ‖ ‖ ‖  for 

(0, ( ))t t h  ,which implies that 

inf( )
2 2

hU t   
ñ ñ

ñ‖ ‖  for (0, ( ))t t h . (23) 

Since 
4,1,u C  taking the derivative in x  on both 

sides of (1) and due to the fact that ,x xtu u  vanish at 

0x   and 1,x   we observe that xxxu  also vanishes 

at 0x   and 

1x  . Applying Taylor's expansion, we discover 

that 

2
2( , ) ( , ) ( , ),

12

0 , (0, ( )).

xx i i xxxx i

h
u x t u x t u x t

i I t t h

 

  

  

To establish the above equalities for 0i   and

i I , we have used the fact that xu  and xxxu  vanish 

at 0x   and 1x  . A direct calculation yields

2
2( , ) ( , ) ( ( , )) ( , )

12

( ( )) ( ( , )), 1 1.

h
u x t u x t f u x t u x txxxxi i i i i

c x f u x t i I
i i i

 



   

    

  

Let ( ) ( ) ( )h h he t U t u t   be the error of 

discretization. From the mean value theorem, we have 

2( ) 2 ( ) ( ) ( , )
12

( ( )) ( ( , )),0 , (0, ( )),

de t hi e t f e u x txxxxi i i i idt

c x f u x t i I t t h
i i i

  



   

    

  

 where i  is an intermediate value between 

( )iU t  and ( , )iu x t . Using (21), (22), we arrive at 

2 2( )
( ) | ( ) |

,0 , (0, ( )).

i
i i

h h

de t
e t L e t Kh

dt

K c i I t t h



 

   

   ‖ ‖

  

Introduce the vector ( )hz t  defined as follows 

( 1) 2( ) ( (0)

), 0 , (0, ( )).

L t

i h h

h h

z t e u Kh

K c i I t t h











   

   

‖ ‖

‖ ‖
  

A straightforward computation reveals that 

2 2| | ,

0 , (0, ( )),

i
i i h h

dz
z L z Kh K c

dt

i I t t h

      

  

‖ ‖
 

(0) (0),0 .i iz e i I     

It follows from Comparison Lemma 2.2 that 

   i iz t e t  for (0, ( ))t t h  , 0 .i I    

In the same way, we also prove that 

   i iz t e t   for (0, ( ))t t h  , 0 i I  , 

which implies that 

( 1) 2( ) ( ) ( (0) )L t

h h h h h hU t u t e u Kh K c 

       ‖ ‖ ‖ ‖ ‖ ‖

 for (0, ( )).t t h   

Let us show that ( ) min{ , }h

qt h T T . Suppose 

that 

( ) min{ , }h

qt h T T . From (22), we obtain 

( 1)

2

( ( )) ( ( )) ( (0)
2

).

L T

h h h h

h h

U t h u t h e u

Kh K c







 



    

 

ñ
‖ ‖ ‖ ‖

‖ ‖

  

Let us notice that both last formulas for ( )t h  are 

valid for sufficiently small h . Since the term on the 

right hand side of the above inequality goes to zero as 

h  goes to zero, we deduce that 0
2


ñ
, which is 
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impossible. Consequently ( ) min{ , }h

qt h T T  . Now, 

let us show that ( )t h T . 

Suppose that ( ) h

qt h T T  . Reasoning as above, 

we prove that 

we have a contradiction and the proof is complete  

Now, we are in a position to prove the main 
theorem of this section. 

Theorem 4.2 

Suppose that the problem (1)-(3) has a solution u  

which quenches in a finite time qT  such that 

4,1([0,1] [0, )).qu C T   Assume that the potential at 

(7)and the initial data at (9) satisfy the conditions (19) 
and (20), respectively. Under the hypothesis of 

Theorem 3.1, the problem (7)-(9) has a solution hU  

which quenches in a finite time 

h

qT and we have 
0

lim .h

q q
h

T T


   

Proof: 

Let 0 / 2qT  . There exists (0,1)ñ  such 

that 

0

1
.

( ) 2

d

A f

 




ñ

 (24) 

Since u  quenches in a finite time qT , there exist 

0 ( ) 0h    and a time 0 ( , )
2

q qT T T


   such that 

min0 ( )
2

u t 
ñ

for 0[ , )qt T T , 0 ( )h h  . It is 

not hard to see that 

min ( ) 0u t   for 0[0, ]t T  , 0 ( )h h   . 

From Theorem 4.1, the problem (7)-(9) has a 

solution ( )hU t  and we get ( ) ( )
2

h hU t u t  
ñ

‖ ‖   

for 0[0, ]t T  , 0 ( )h h  , which implies that 

0 0( ) ( )
2

h hU T u T  
ñ

‖ ‖  for 0 ( )h h   . Applying 

the triangle inequality, we find that 

0 inf 0 0 0 inf( ) ( ) ( ) ( )
2 2

h h h hU T U T u T u T     
ñ ñ

ñ‖ ‖ ‖ ‖ ‖ ‖

 for 0 ( )h h   . 

From Theorem 3.1, ( )hU t  quenches at the time

h

qT  . We deduce from Remark 3.1 and (22) that for

0 ( )h h 

0 inf( )

0 0
0

1
| | | | | |

( ) 2

hU T
h h

q q q q

d
T T T T T T

A f

 



       

‖ ‖

which leads us to the desired result.   

5- Full discretizations 

In this section, we study the phenomenon of 
quenching using a full discrete explicit scheme of (1)-

(3). Approximate the solution ( , )u x t  of the problem 

(1)-(3) by the solution 
( ) ( ) ( ) ( )

0 1( , , , )n n n n T

h IU U U U   

of the following explicit scheme 

( ) 2 ( ) ( )( )n n n

t i i i iU U f U    , 0 ,i I   (25) 

(0) 0,i iU    0 i I  , (26) 

where 0,n    

( 1) ( )
( ) .

n n
n i i

t i

n

U U
U

t


 



  

2

( ) ( ) ( )
( ) 0, for 0.

f s f s s f s
s

s s

  
    

( ) 0,n

hU   then 

( )( )

inf

( ) ( )

inf

( )( )
nn

hi

n n

i h

f Uf U

U U
  

‖ ‖

‖ ‖
,  

0 i I  , and a straightforward computation 

reveals that 

( )

( 1) ( ) ( )inf

0 1 02 2 ( )

inf

( )2
(1 2 )

n

n n nhn n
h n n

h

f Ut t
U U t U

h h U




 
    

‖ ‖
‖ ‖

‖ ‖
 

( )

( 1) ( ) ( )inf

12 2 ( )

inf

( )

12

( )
(1 2 )

,  1  i I-1,      

n

n n nhn n
i i h n in

h

nn
i

f Ut t
U U t U

h h U

t
U

h



 



 
    


  

‖ ‖
‖ ‖

‖ ‖
  

( )

( 1) ( ) ( )inf

12 2 ( )

inf

( )2
(1 2 ) .

n

n n nhn n
I I h n In

h

f Ut t
U U t U

h h U


 

 
    

‖ ‖
‖ ‖

‖ ‖
  

In order to permit the discrete solution to reproduce 
the properties of the continuous one when the time t  

approaches the quenching time ,qT we need to adapt 

the size of the time step so that we choose 
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( )2

inf

( )

inf

( )(1 )
min{ , }

2

n

h

n n

h

f Uh
t

U





 

‖ ‖

‖ ‖
  

With 0 1  . We observe that 
( )

inf

2 ( )

inf

( )
1 2 0,

n

hn
h n n

h

f Ut
t

h U
 


   

‖ ‖
‖ ‖

‖ ‖
  

 Which implies that 
( 1) 0.n

hU    Thus, since by 

hypothesis 
(0) 0h hU   , if we take nt as defined 

above, then using a recursion argument, we see that 
the positivity of the discrete solution is guaranteed. 
Here,  is a parameter which will be chosen later to 

allow the discrete solution 
( )n

hU to satisfy certain 

properties useful to get the convergence of the 
numerical quenching time defined below. If necessary, 
we may take 

( )2

inf

( )

inf

( )(1 )
min{ , }

n

h

n n

h

f Uh
t

K U





 

‖ ‖

‖ ‖
 

with 2K  because in this case, the positivity of 
the discrete solution is also guaranteed. The following 
lemma is a discrete form of the maximum principle. 

Lemma 5.1 

Let 
( )n

ha  and 
( )n

hV be two sequences such that 

( )n

ha  is bounded and 

( ) 2 ( ) ( ) ( ) 0,     n n n n

t i i i iV V a V     

0 ,i I   0,n   (27) 

(0) 0,iV   0 .i I   (28) 

Then 
( ) 0n

iV   for 0,n   \; 0 i I    

if 

2

( ) 2
.

2
n n

h

h
t

a h

 
 ‖ ‖

  

Proof: 

If 
( ) 0,n

hV  then a routine computation yields 

( 1) ( ) ( ) ( )

0 1 02 2

2
(1 2 ) ,n n n nn n

n h

t t
V V t a V

h h





 
    ‖ ‖   

( 1) ( ) ( ) ( ) ( )

1 12 2 2
(1 2 ) ,n n n n nn n n

i i n h i i

t t t
V V t a V V

h h h



  

  
    ‖ ‖

1 1,i I     

( 1) ( ) ( ) ( )

12 2

2
(1 2 ) .n n n nn n

I I n h I

t t
V V t a V

h h



 

 
    ‖ ‖

  

Since 

2

( ) 2
,

2
n n

h

h
t

a h

 
 ‖ ‖

  

we see that 
( )n

n ht a ‖ ‖   

 is nonnegative. From (27), we deduce by induction 

that 
( ) 0n

hV   which ends the proof.   

A direct consequence of the above result is the 
following 

comparison lemma. Its proof is straightforward. 

Lemma 5.2 

Let 
( ) ( ),n n

h hV W  and 
( )n

ha  be three sequences 

such that 
( )n

ha is bounded and 

( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ,n n n n n n n n

t i i i i t i i i iV V a V W W a W       

 0 , 0,i I n     

(0) (0) ,i iV W  0 .i I    

Then 
( ) ( )n n

i iV W  for 0,    0n i I    if 

2

( ) 2
.

2
n n

h

h
t

a h

 
 ‖ ‖

  

Now, let us give a property of the operator t  

stated in the following lemma. Its proof is quite similar 
to that of Lemma 3.1, so we omit it here. 

Lemma 5.3 

Let 
( )nU   be such that 

( ) 0nU   for 0n  . 

Then, we have 

( ) ( ) ( )( ) ( ) , 0.n n n

t tf U f U U n     

Lemma 5.4 

Let a ,b  be tow positive numbers such that 1.b   

then following estimate holds 

0
0

1
.

( ) ( ) ln( ) ( )

n
a

n
n

ab a d

f ab f a b f









     

Proof: We have 

1

0
0

.
( ) ( )

x x
n

x xn
n

ab ab dx

f ab f ab

 



    

 We observe that 
1x nab ab   for 1,n x n     

which that 

1
1

1
.

( ) ( )

x n
n

x nn

ab dx ab

f ab f ab





   

Consequently, we get 
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1 1

0 0( ) ( ) ( ) ( )

x x n
n n

x x nn n
n n

ab dx ab dx a ab

f ab f ab f a f ab

  

 

     
. 

Use the fact that 

0 0

1

( ) ln( ) ( )

x
a

x

ab d

f ab b f







     

to complete the rest of the proof.   

The theorem below is the discrete version of 
Theorem 4.1. 

Theorem 5.1 

Suppose that the problem (1)--(3) has a solution 
4,2 ([0,1] [0, ])u C T   such that 

[0, ] minmin ( ) 0.t T u t     Assume that the initial 

data at (26) satisfies the condition (16) . Then, the 

problem (25)--(26) has a solution 
( )n

hU  for h 

sufficiently small, 0 n J   and the following relation 

holds 

( )

0

2 as  h

max ( ) ( (0)

)  0. 

n

n J h h n h h

h h

U u t O u

c h





   



  

  

‖ ‖ ‖ ‖

‖ ‖
  

where J  is any quantity satisfying the inequality 
1

0

J

n

n

t T




   and 

1

0

.
n

n j

j

t t




    

Proof: 

For each h , the problem (25)-(26) has a solution 
( ).n

hU  Let N J  be the greatest value of n  such 

that 

( ) ( ) for .
2

n

h h nU u t n N


  ‖ ‖  (29) 

We know that 1N   because of (16). Applying the 

triangle inequality, we have 

 

( ) ( )

inf inf( ) ( )

for .    3  
2

0

n n

h h n h h nU u t U u t

n N


  

 

‖ ‖ ‖ ‖ ‖ ‖

  

As in the proof of Theorem 4.1, using Taylor's 
expansion, we find 

that for n N  , 0 ,i I    

2

2

( , ) ( , ) ( ( , )) ( ( ) ) ( ( , ))

( , ) ( , ).
12 2

t i n i n i i n i i i n

n
xxxx i n tt i n

u x t u x t f u x t c x f u x t

th
u x t u x t

       


 

  

Let 
( ) ( ) ( )n n

h h h ne U u t   be the error of 

discretization. From the mean value theorem, we get 

for ,n N  0 ,i I    

2
( ) 2 ( ) ( ) ( )( ) ( , )

12

( , ) ( ( ) ) ( ( , )),
2

n n n n

t i i i i i xxxx i n

n
tt i n i i i n

h
e e f e u x t

t
u x t c x f u x t

   



   


  

  

where 
( )n

i  is an intermediate value between 

( , )i nu x t  and 
( ).n

iU  Since ( , )xxxxu x t , ( , )ttu x t  are 

bounded, ( , )u x t   and 
2( ),nt O h   then there 

exists a positive constant M  such that 

( ) 2 ( ) ( ) ( ) 2( ) ,

0 , .

n n n n

t i i i i i h he e f e M c Mh

i I n N

     
     

  

‖ ‖

  

Set ( 1) ( )
2

hL c f


   ‖ ‖  and introduce the 

vector 
( )n

hV  defined as follows 

( 1)( ) 2( (0) ),

0 , .

nL tn

i h h h hV e u Mh M c

i I n N

 

     

  

‖ ‖ ‖ ‖

  

A straightforward computation gives 

( ) 2 ( ) ( ) ( ) 2( ) ,

0 , ,

n n n n

t i i i i i h hV V f V Mh M c

i I n N

     
     

  

‖ ‖

  

(0) (0) , 0 .i iV e i I     

We observe from (29) that 
( )( )n

i if   is 

bounded 

from above by .L  It follows from Comparison 

Lemma 5.2 that 
( ) ( ).n n

h hV e  By the same way, we 

also prove that 
( ) ( ) ,n n

h hV e   which implies that 

( 1)( ) 2( ) ( (0) ), .nL tn

h h n h h h hU u t e u Mh M c n N 

        ‖ ‖ ‖ ‖ ‖ ‖

  

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 5 Issue 6, June - 2019 

www.jmess.org 

JMESSP13420541 2641 

Let us show that .N J  Suppose that .N J  If 

we replace n  by N  in (29) and use (30), we find that 

( ) ( 1)

2

( ) ( (0)
2

).

N L T

h h N h h

h h

U u t e u

Mh M c








 



    

 

‖ ‖ ‖ ‖

‖ ‖

  

Since the term on the right hand side of the second 

inequality goes to zero as h  goes to zero, we deduce 

that 0,
2


  which is a contradiction and the proof is 

complete.  To handle the phenomenon of 
quenching for discrete equations, we need the 
following definition. 

Definition 5.1  

We say that the solution 
( )n

hU of 25)-(26) quenches 

in a finite time if\; 
( )

inf 0n

hU ‖ ‖  for 0,n   but 

1
( )

inf

0

lim 0 lim .
n

n t

h h i
n n

i

U and T t




 


    ‖ ‖   

The number 
t

hT 
 is called the numerical quenching 

time of 
( ).n

hU  The following theorem reveals that 

the discrete solution 

( )n

hU  of (25)-(26) quenches in a finite time under 

some hypotheses. 

Theorem 5.2 

Let 
( )n

hU  be the solution of (25)-(26). Suppose that 

there exists a constant (0,1]A  such that the initial 

data at (26) satisfies 

2 ( ) ( ),i i i if Af       0 .i I   (31) 

Then 
( )n

hU  is nonincreasing and quenches in a 

finite time 
t

hT 
 which satisfies the following estimate 

infinf

0
inf

,
ln(1 ) ( )( )

ht h

h

h

d
T

ff

   

 

  
 

‖ ‖‖ ‖

‖ ‖
  

where 

2

inf

inf

(1 ) ( )
min{ , }.

2

h

h

h f
A

 
 




 

‖ ‖

‖ ‖
  

Proof: 

Introduce the vector 
( )n

hJ  defined as follows 

( ) ( ) ( )( )n n n

i t i iJ U Af U   , 0 , 0.i I n     

A straightforward computation yields for 

0 , 0,i I n     

 ( ) 2 ( ) ( ) 2 ( )

( ) 2 ( )( ) ( ).

n n n n

t i i t t i i

n n

t i i

J J U U

A f U A f U

    

 

   


  

Using (25), we arrive at 

( ) 2 ( ) ( ) 2 ( )( ) ( ) ( ),n n n n

t i i i t i iJ J A f U A f U        

 0 , 0.i I n     

It follows from Lemmas 5.3 and 3.1 that for 

0 , 0,i I n     

( ) 2 ( ) ( ) ( )

( ) 2 ( )

( ) ( )

( ) .

n n n n

t i i i i t i

n n

i i

J J A f U U

Af U U

   



   



  

We deduce from (25) that 

( ) 2 ( ) ( ) ( )( ) ,

0 , 0.

n n n n

t i i i i iJ J f U J

i I n

     

  
  

Obviously, the inequalities (31) ensure that 
(0) 0.hJ   Applying Lemma 5.1, we get 

( ) 0,n

hJ   for

0n   , which implies that 

 
( )

( 1) ( )

( )

(( ))
(1 ),    32

n
n n i

i i n n

i

f U
U U A t

U

   

0 , 0.i I n     

These estimates reveal that the sequence 
( )n

hU  is 

nonincreasing. By induction, we obtain 
( ) (0) .n

h h hU U    Thus, the following holds 

 

( ) 2

inf inf

( )

inf inf

( ) (1 ) ( )
min{ , }

2

33.            

n

h h

n n

h h

f U h f
A t A

U

 







 



‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

  

Let 0i  be such that 
0

( ) ( )

inf .n n

h iU U‖ ‖  Replacing i  

by 0i  in (38), we obtain 

 ( 1) ( )

inf inf (1 ), 0,   34  n n

h hU U n   ‖ ‖ ‖ ‖   

and by iteration, we arrive at 
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( ) (0)

inf inf

inf

(1 )

(1 ) , 0.        35  

n n

h h

n

h

U U

n



 

  

 

‖ ‖ ‖ ‖

‖ ‖

  

fSince the term on the right hand side of the above 
equality goes to zero as n  approaches infinity, we 

conclude that 
( )

inf

n

hU‖ ‖  tends to zero as n  

approaches infinity. Now, let us estimate the 
numerical quenching time. Due to (33) and the 

restriction 

( )

inf

( )

inf

,
( )

n

h

n n

h

U
t

f U


 

‖ ‖

‖ ‖
  

it is not hard to see that 

inf

0 0

inf

(1 )
,

( (1 ) )

n

h

n n n n

h

t
f

 


 

 

 


   



‖ ‖

‖ ‖
  

because 
( )

s

f s
 is nondecreasing for 0.s   It 

follows from Lemma 5.4 that 

infinf

0
0

inf

.
ln(1 ) ( )( )

hh

n n

h

d
t

ff

   

 



   
 

‖ ‖‖ ‖

‖ ‖
  

Use the fact that the quantity on the right hand side 
of the above inequality converges towards is finite to 
complete the rest of the proof.   

Remark 5.1 From (35), we deduce by induction 
that 

( ) ( )

inf inf (1 ) for ,n q n q

h hU U n q   ‖ ‖ ‖ ‖  

and we see that 

( )

inf

( )

inf

(1 )
,

( (1 ) )

q n q

t h

h q n q n n q q n q

h

U
T t t

f U








  

  


     



‖ ‖

‖ ‖

  

because 
( )

s

f s
 is nondecreasing for 0.s   It 

follows from Lemma 5.4 that 

( )
inf

( )

inf

( ) 0
inf

.
ln(1 ) ( )( )

q
h

q
U

t h

h q q

h

U d
T t

ff U

  

 

   
 

‖ ‖‖ ‖

‖ ‖

  

Since 

2

inf

inf

(1 ) ( )
min{ , },

2

h

h

h f
A

 
 




 

‖ ‖

‖ ‖
 if we take

2h   , we get 

2 2

inf inf

inf inf

(1 ) ( ) ( )
min{ ,1} min{ ,1}.

2 4

h h

h h

h h f f
A A

 

  

 
 

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

 Therefore, there exist constants 0 1,c c  such that 

0 10 /c c      and 

(1)
ln(1 )

O








 , for the choice 

2.h    

In the sequel, we take 
2. h   Now, we are in a 

position to state the main theorem of this section. 

Theorem 5.3 

 Suppose that the problem (1)-(3) has a solution u  

which quenches in a finite time qT  and 

4,2([0,1] [0, )).qu C T   Assume that the initial data 

at (25) satisfies the condition (16). Under the 

assumption of Theorem 5.2, the problem (25)-(26) 

has a solution 
( )n

hU  which quenches in a finite time 

t

hT 
 and the following relation holds 

0
lim .t

h q
h

T T


   

.Proof   

We know from Remark 5.1 that 
ln(1 )



 
 is 

bounded. Letting 0 / 2,qT   there exists a 

constant (0,1)R  such that 

0
.

( ) ln(1 ) ( ) 2

RR d

f R f

   

 
 

   (36) 

Since u  quenches at the time ,qT  there exist 

1 ( , )
2

q qT T T


   and 0 ( ) 0h    such that 

min0 ( )
2

R
u t   for 1 0[ , ), ( ).qt T T h h    Let q  be a 

positive integer such that 

1

1

0

[ , )
q

q n q

n

t t T T




     

for 0 ( ).h h   It follows from Theorem 5.1 that 

the problem (25) --(26) has a solution 
( )n

hU  which 

obeys 

( ) ( )
2

n

h h n

R
U u t  ‖ ‖  for 0, ( )n q h h    

 which implies that 
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( ) ( )

inf inf

0

( ) ( )

, ( ).
2 2

q q

h h h q h qU U u t u t

R R
R h h 

  

   

‖ ‖ ‖ ‖ ‖ ‖

From Theorem 5.2, 
( )n

hU  quenches at the time
t

hT 
. It 

follows from Remark 5.1 and (36) that 
( )

inf

( )

inf

( ) 0
inf

| |
ln(1 ) ( ) 2( )

q
h

q
U

t h

h q q

h

U d
T t

ff U

   

 

    
 

‖ ‖‖ ‖

‖ ‖
  

because 
( )

inf

q

hU R‖ ‖  for 0 ( ).h h   We deduce  

that for  

0 ( ),| | | |

| | ,
2 2

t

q h q q

t

q h

h h T T T t

t T



 






    

   
  

which leads us to the result.   

6- Numerical result 

In this section, we give some computational 
experiments to the quenching time for the solution of 
the problem (1)-(3) to confirm the theory developed in 
the previous section, Firstly, we take the explicit 
scheme in (37)-(38). 

 
( 1) ( )

2 ( ) ( )( ) ,0  7, 3
n n

n n pi i
i i i

n

U U
U U i I

t
 




   


  

(0) 0,i iU    0 ,i I   (38) 

where 
( ) 1

inf0, n p

n hn t K U    ‖ ‖  with 
2K h  

and 1.p   In the case where, 

0

0.99 sin( )
( )

2

x
u x

 
  with 0 1   and 

1 0.1 sin( ).i i h      

Secondly, we use the following implicit scheme in 
(39)-(40). 

 

( 1) ( )
2 ( 1) ( ) 1 ( 1)( ) ,

0 ,                     9 3  

n n
n n p ni i

i i i i

n

U U
U U U

t

i I

 


   
 



 

  

(0) 0,i iU     0 ,     40i I    

In the case where, 
( ) 1

inf0, n p

n hn t K U    ‖ ‖   

with 
2 2 sin( )
, ,0

4
i

ih
K h i I

 



      

 and 1 sin( ).i i h    For the above implicit 

scheme, the existence and positivity of thediscrete 

solution 
( )n

hU  is guaranteed using standard methods 

(see [6]). In the tables 1-10, in rows, we present the 
numerical quenching times, the numbers of iterations 
and the CPU times corresponding to meshes of 16, 
32, 64, 128. We take for the numerical quenching time 

1

0

n

n j

j

t t




   which is computed at the first time when 

16

1| | 10 .n n nt t t 

     

Table 1: 

 Numerical quenching times, numbers of iterations 
and CPU times (seconds) obtained with the 

explicitEuler method for 1    

 

Table2:Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 

implicit Euler method for 1    

 

Table3: Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 
implicit Euler method for 1

100
 

.
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Table4: Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 
implicit Euler method for 1

100
 

 

 

Table5:Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 

implicit Euler method for 
1

1000
   

 

Table6:Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 

implicit Euler method for 
1

1000
   

 

Table7:Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 

implicit Euler method for 
1

10000
   

 

Table8:Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 

implicit Euler method for 
1

10000
   

 

Table9:Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 

implicit Euler method for 0   

 

  

 Table10: Numerical quenching times,numbers of 
iterations and CPU times (seconds) obtained with the 
implicit 

Euler method for 
1

10000
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Remark 6.1 

When 0   and  1p   , we know that the 

quenching time of the continuous solution of (1)--(3) is 

equal 0.125  . We have also 

seen in Remark 3.3 that the quenching time of the 

semidiscrete solution is equal 0.125  . We observe 

from Tables 1--10 that when 

  decays to zero, then the numerical quenching 

time of the discrete solution goes to 0.125  . When 

one examines tables 

1,2,3 and 4 one sees that an important 
perturbation on the potential and the initial datum has 
a meaningful impact on the numerical quenching time. 
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