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Abstract—The ultraviolet absorbing Aerosol 
Index observations derived from the Ozone 
Monitoring Instrument (OMI-AI) are analyzed over 
Egypt covering the geographical domain (22°–
31°N, 24°–36°E) during the period from 2005 to 
2016. In the temporal variability, time series, daily, 
monthly average variation of OMI-AI and its 
frequency distributions, represent threshold, were 
created.  Time series values reflect increase with 
the time, with increasing rate equal to 0.7 x10

-4
. In 

the spatial distribution, with a spatial resolution of 
1°×1°, OMI-AI value used to reveal the west to east 
decreasing gradient. Therefore, the relationships 
between daily OMI-AI and longitude (Lon), in 
mean-latitude (27.5°N), with inverse correlation 
have examined. The correlation coefficient R

2
 in 

cold season, hot season and all period values are 
40%, 32% and 29% respectively.  

Keywords— Temporal variability; Contour 
maps; OMI data; UV-absorbing aerosol index; 
Egypt. 

I. INTRODUCTION  

Since thirteen years ago, a new expression of the 
ultraviolet absorbing aerosol index (AAI) was 
introduced to be more sensitive to ultraviolet absorbing 
aerosols. This aerosol index depends on 
measurements of the reflectance at different two 
wavelengths in the ultraviolet coupled with radiative 
transfer model of the Rayleigh atmosphere. At first, the 
Total Ozone Mapping Spectrometer (TOMS) 
developed it but after that it was adapted for use with 
the Ozone Monitoring Instrument (OMI), also it called 
Aerosol index (AI).  

It is a helpful parameter for deducing the existence 
of near ultraviolet absorbing aerosols in the earth's 
atmosphere such as smoke, mineral dust or soot, 
desert dust, and volcanic ash, cloud, no indication of 
sulfate aerosols. As well as, studying the aerosol 
behavior in the energy budget and climate forcing, 
since it allows characterize the spatial distributions and 
temporal variation of tropospheric aerosols over both 
oceans and land surface [1-5].  

The existence of ultraviolet absorbing aerosols in 
the earth's atmosphere affects the amount of ultraviolet 
radiation reaching the earth's surface and the radiation 
balance. The atmospheric loading of ultraviolet 
absorbing aerosols is the sum of several large 

annually cyclic sources of aerosols distributed over 
large areas by tropospheric wind circulation [6],[7]. 
Observations of ultraviolet absorbing aerosols at sites 
remote from the sources also show a distinct cyclic 
pattern [8] driven by atmospheric transport from one or 
more of these sources. The greatest sources of 
ultraviolet absorbing aerosols in the earth's 
atmosphere are from biomass burning and wind-borne 
desert dust from events that last a week or longer [2].  

There are three reasons that make AAI such a 
helpful index are: (1) It is not more sensitive to surface 
type, which allows retrieval over both oceans and land 
by the same algorithm. (2) The AAI can be retrieved in 
the presence of clouds, and is in fact even more 
susceptible to absorbing aerosols above strongly 
reflective surfaces such as clouds, snow and ice [3, 9-
10]. (3)The AAI contains information about aerosol 
layer height [2-3,11-14]. 

 In spite of that the Ozone Monitoring Instrument 
absorbing Aerosol Index (OMI-AI) is an indicator of the 
presence of the absorbing aerosols in the earth's 
atmosphere, does not measure actual concentration of 
dust, many scientists have used, very useful, in being 
widely used to increasingly for variety of applications, 
for instance to: (1) Detection , monitoring the 
propagation of soil dust in the atmosphere [2,15-17] 
and identified dust source regions at global scale [15, 
18- 21] also, understanding the transport of desert dust 
[2,12,14]. (2) Monitoring dust activities of retrieving 
aerosol properties over land surface and a sign for the 
existence of dust for a dust storm intense [2-3, 21-22]. 
(3) Studied the nature and consequences characterize 
the dust sources of Saharan dust [20,15,18, 23] and 
detected key source areas of dust plume in the whole 
world [18,24-25]. (4) Mapping global distribution of 
ultraviolet absorbing aerosols correcting for aerosol-
induced errors in the retrieval of column ozone 
amounts [2]. (5) Identifying the sources of air pollution 
(identify carbon and mineral aerosols from pure 
scattering particles such as sulphate aerosol and sea 
salt aerosol) over the whole globe and understanding 
the transport of air pollution across the oceans and 
continents [1-2, 9, 14, 25-32]. (6) Study radiation 
energy balance, climate forcing and air quality forecast 
models such as model air quality and forecast [33-34].  

Till now ultraviolet absorbing aerosols driven from 
OMI satellite (OMI-AI) is not yet sufficiently described 
over Egypt. This study analyzes the spatial-temporal of 
OMI-AI and its distribution over Egypt covering the 
geographical area 22°–31°N, 24°–36°E during the 
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period from 2005 to 2016. Many studies have been 
made to understand the chief reasons for the 
increased pollution levels in Cairo using both ground-
based and satellite air quality data, for example, [35-
46].  

This study analyzes OMI-AI over Egypt, a poorly 
studied area, and having locations with a variation of 
ultraviolet aerosol index patterns, covering the 
geographical area 22°–31°N, 24°–36°E during the 
period (2005-2016). The chief objective goal of this 
study is double. In the first part of this study, we 
present an overview of OMI-AI, in 1 pixel, for whole 
Egypt territory. The second goal of this work is to study 
the regional spatial distribution of absorbing aerosols 
with a spatial resolution of 1°×1°, 104 pixels, for whole 
Egypt territory. To the best of our knowledge no such 
study has so far been used to analyze the variability of 
OMI-AI over Egypt obtained from OMI. To study the 
effect of longitude on variation of absorbing aerosol 
loading, we have also found its correlation with the 
OMI-AI measurements. 

We briefly description of the remote sensing 
instruments used in this work and give a short 
explanation of the algorithm chosen for data product in 
Section II. Section III is the analysis and discussion of 
the results, subdivided into two parts. The first part 
analyzes the OMI-AI climatology (temporal variability 
including the time series, daily and monthly average 
variation of OMI-AI), the second part targets the 
evaluation of the spatial distribution; follow by its 
relationship with the longitude. Finally, main 
concluding points of the paper presented in Section IV. 

II. OMI UV AEROSOL INDEX DATA ACCESS 

The Ozone Monitoring Instrument (OMI) flown 
onboard the NASA EOS Aura spacecraft (propelled 
July 2004) [47]. OMI is the successor of the TOMS 
instruments, The key targets of the OMI estimations 
incorporate monitoring of the Earth's ozone, aerosols , 
air quality, and smokes from biomass burning, SO2 
from volcanic ejections, and key tropospheric 
pollutants and surface UV radiation. It gauges the sun 
oriented light scattered by the atmosphere in the 270– 
500 nm wavelength scope of the sun spectrum. In view 
of better estimation accuracy and better spatial 
resolution (changing from 13 km × 24 km at nadir to 
around 28 km × 150 km along its scan edges) OMI 
gives better gauges of atmospheric pollutants and their 
vehicle through the Earth's environment [47-49].  

The OMI estimations are utilized as contribution to 
reversal calculations to recover ozone column amount 
and its vertical distribution, clouds, aerosols, and total 
column amounts of the trace gases SO2, NO2, OClO, 
BrO, and HCHO. Torres et al. [4] described in detail 
(OMAERUV) algorithm. The NASA Goddard Earth 
Sciences Data and Information Services Center (GES 
DISC) has developed a web based on line data 
visualization and data mining capabilities called 
‘Giovanni’. The Giovanni (GES-DISC Interactive On-
line Visualization & Analysis Infrastructure) is a Web 
based interface for data exploration, visualization and 
analysis (https://giovanni.gsfc.nasa.gov/). 

The UV Aerosol record (AI) is a measure of how 
much the wavelength reliance of backscattered UV 
radiation , where the ozone absorption is very small , 
from an air containing aerosols (absorption,  Rayleigh 
scattering and Mie scattering) differs from that of a 
pure molecular atmosphere (pure Rayleigh scattering). 
It is the difference between the observations and 
model calculations of absorbing and non- absorbing 
spectral radiance ratios .Quantitatively, the aerosol 
index AI is defined to be 

𝐴𝐼 = 100 [𝑙𝑜𝑔10 (
𝐼360

𝐼331
)

𝑚𝑒𝑎𝑠
− 𝑙𝑜𝑔10 (

𝐼360

𝐼331
)

𝑐𝑎𝑙𝑐
 ]           (1) 

where Imeas is the measured backscattered radiance at 
a given wavelength and Icalc is the backscattered 
radiance calculated at that wavelength for a pure 
Rayleigh atmosphere [4] . Thus by this methodology, 
AI positive values, AI >1, are generally represent UV-
absorbing aerosols such as carbonaceous aerosols, 
soot particles, volcanic ash aerosols, mineral dust and 
smoke. However, negative values, AI<0 , are 
associated with non-absorbing aerosols (pure 
scattering) such as sulfate and sea salt particles from 
both natural and anthropogenic sources since the AI 
increases with altitude for the same aerosol load 
[3,15]. Near zero, AI=0, values represent cloud 
presence [11,21, 34, 45, 49-50]. 

III. RESULTS AND DISCUSSION 

A.  Temporal Variation of OMI-AI 

In the frame of the variability, Egypt which covering 
the geographical domain (22°–31°N, 24°–36°E) was 
considered as an average area (one pixel). Variations 
of OMI-AI during the studied period (2005-2016) time 
series, daily, monthly average variation and its 
frequency distributions, represent threshold, were 
created for cold seasons, hot seasons and all period. 

 

Fig. 1. Time series variations of OMI-AI over Egypt during 
the studied period, red line introduce the trend, Maximum 
value in 2015 (red narrow) while the minimum value in 2010 
(green narrow). 

 Fig. 1 shows the daily time series of OMI-AI over 
whole Egypt, the values reflect increase with the time, 
with increasing rate of OMI-AI equal to 0.7 x10

-4
. 

Maximum was 3.72 occurrences in 10th September 
2015 and Minimum was 0.61 occurrences in 25

th
 

January 2010. Fig. 2 shows daily average variation of 

 

OMI-AI = 7E-05*(Day) - 1.5385
R² = 0.0465
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OMI-AI over whole Egypt, during the studied period. 
OMI-AI has generally high values during hot seasons, 
spring and summer, and low values during cold 
seasons, winter and autumn. The maximum daily 
average values were 2.01±0.62, while the minimum 
daily average values were 0.86±0.09. Standard 
deviations (vertical lines) of daily average values have 
generally high values during hot season's days 
reaching ±0.76. But its value decreasing to ±0.03 at 
cold season's days, i.e. these values were more 
fluctuate in hot season. It may be attributed to the 
weather conditions. The relatively high temperature in 
hot season's days, this leads to encouragement of air 
convection and up-word movement of air parcels 
containing aerosols. Effect of Khamsin depression 
which lead to increasing of dust storms occurrence. 
Fig. 3 shows the time series of monthly mean 
variations of OMI-AI with their corresponding standard 
deviations over Egypt during the studied period. The 
OMI-AI values ranged from 0.79 up to 1.82. The OMI-
AI variability in the same month changes lightly from 
year-to-year , characterized by yearly cyclic variations, 
with highest values viewed in the hot months (March–
August), while lowest values were recorded during 
cold months (September–February) with increasing 
trend equal to 0.6 x10

-5
 for the studied period.  

 

Fig. 2. Daily average variations of OMI-AI, vertical lines 
(standard deviation), over Egypt during the studied period. 

 

Fig. 3. The time series of mean monthly variation of OMI-AI 
with the standard deviation, error bars, the trend in values 
over Egypt is shown by linear fit (red line). 

Hot months show relatively high monthly average 
values of OMI-AI compared with the corresponding 

value in cold months. It may be ascribed to the 
weather conditions.  The maximum average value of 
OMI-AI recorded in May 2013, it was 1.82 while the 
minimum value recorded in December 2006, and it 
was 0.79. 

B.  Box and Whiskers diagrams 

Fig. 4 summarizes the statistics of monthly values 
of OMI-AI; Box and Whiskers diagrams have been 
used to illuminate the characteristics of the OMI-AI 
data. Here, we notice a significant increasing trend in 
all computed results (average for example) OMI-AI 
increases from January (1.07) to April (1.60) and then 
remains almost constant up to June (1.52) followed by 
a gradual decrease up to December (1.02). These 
average monthly variations in OMI–AI over Egypt can 
be well justified by considering the cyclic variations in 
meteorological conditions and anthropogenic. Box and 
Whiskers diagrams of yearly values of OMI-AI; shown 
in Fig. 5, we notice (maximum for example) OMI-AI in 
2016 have the high record (2.36) and followed by 2010 
(2.20).  

 

Fig. 4. The monthly box-whisker plots for OMI-AI over Egypt. 

 

Fig. 5. The yearly box-whisker plots for OMI-AI over Egypt. 

C.  Threshold frequency distributions of OMI-AI 

Some researchers have studied thresholds in order 
to reduce possible bias in the analysis of AI data and 
determine dust sources underestimate the importance 
of sources on the edges of deserts [12, 51]. 
Thresholds are varying introduced which set at 1.0 
over North Africa, the Middle East and South and 
Central Asia, and 0.7 over all other areas [15, 25].  
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Fig. 6 illustrates Gaussian distribution of seasonal 
OMI-AI over Egypt; the dashed vertical red line 
represents threshold line, in this paper, we use 1.0 as 
the threshold. The distribution is more directed to low 
values in the cold seasons in comparison with that in 
hot one which characterized by relatively high 
pollutant. 

 

Fig. 6. Threshold frequency distributions of cold season, hot 
season and all period OMI-AI over Egypt; use 1.0 as the 
threshold, represent by the dashed vertical red line. 

D.  Spatial distribution of OMI-AI 

About 12-years (2005 to 2016) daily OMI-AI 
average spatial distribution over Egypt is mapped onto 
a grid of 1° in longitude by 1° in latitude shown in Fig. 7 
to Fig. 9. The cold season recorded the minimum 
values of OMI-AI, because of the increased amount of 
rainfall and high relative humidity leading to aerosol 
size increases and subsequent deposition over Egypt, 
as shown in Fig. 7. Also, decreases in temperature, 
leading to high water uptake in the aerosols, hence 
increased particle size and mass, and increased fall 
and deposition velocities. In Hot season, The 
Mediterranean is frequently impacted by dust storms in 
the late spring and summer [52- 53]. The TOMS data 
suggest that the principal sources of the dust are most 
likely the regions described here in eastern Algeria, 
Tunisia, Libya, and Egypt [15]. In the cold seasons the 
values, indicating a decreasing trend of OMI-AI. This 
leads to an overall mean increasing OMI-AI of 
0.015±0.148 and 0.032±0.165 for the cold and the hot 
season, respectively. The remarkable finding in this 

season is the highest OMI-AI values as well as the 
strong east-to-west gradient.  

 

Fig. 7. Spatial distribution of average OMI-AI  for  a) cold 
season  b) hot season and all period  over Egypt (2005 to 
2016). 

Notice That OMI-Al has a periodic and seasonal 
behavior; the increase of OMI-AI values (1.9–2.0) 
mainly in March to June are found over the northwest 
regions of Egypt (Fig. 8), directly affected by the 
existence of dust particles still suspended in the air at 
Libya desert. May exhibits higher values over all parts 
of Egypt with emphasis in the north-west. OMI-AI 
decreases in cold months, while values equal to those 
of December are observed only on certain days. 
Furthermore, in hot season, the aforementioned 
situation strongly changes. Significant seasonal 
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differences are revealed in both OMI-AI values and 
their spatial distribution over Egypt. In hot season the 
maximum dust transport occurs in North Africa when 
large quantities of dust are carried across the 
Mediterranean to Europe and the Middle East [52] and 
across the Atlantic to the Caribbean [54], the 
southeastern United States [55-56], and the 
midlatitude western North Atlantic [15]. In contrast, 
frequent chained depressions can be observed in 
spring, These depressions, called “Khamsin” 

depressions in Arabic, coincide with strong winds 
blowing from the south/southwest and raising dust on 
their way [42, 57]. Fig. 9, illustrate the annual 
distribution, shows a significant match in spatial 
distribution from year to another. So we can say that 
the distribution of aerosols on Egypt annually is almost 
constant in terms of distribution but differs slightly in 
terms of value; The highest values recorded in years 
2010 (1.7) and 2016 (1.9). 

 

Fig. 8. Spatial distribution of Monthly average OMI-AI over Egypt (2005 to 2016). 
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Fig. 9. Spatial distribution of annual average OMI-AI over Egypt (2005 to 2016). 

E.  Correlation coefficients between OMI-AI and 
longitude 

The OMI-AI spatial distributions over Egypt show a 
pronounced east-to-west gradient. In order to analyze 
it we concentrate on the longitudinal variation of the 
OMI-AI values, spatially over the latitudinal 27.5°N. 
The monthly-mean longitude averaged OMI-AI values 
are plotted against longitude  for each month, cold 
season, hot season and all period of the study (2005 – 

2016) are analyzed, as shown in Fig. 10, with a linear 
fit of the form OMI-AI =a*Lon +b  where  a and b 
values associated with the R² coefficient are given in 
Table 1. Correlation coefficients (R²) between OMI-AI 
and Longitude are between 70% in February and 28% 
in November. Note also low R

2
 values in all period 

(29%), Cold season (40%) and Hot season (32%) 
indicative of large scatter.  The slopes is (from -0.0447 
to -0.0773) always negative, indicating a decreasing 
OMI-AI trend to the eastern longitudes. 
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Fig. 10. Scatter Plot of  the equation OMI-AI =a*Lon +b and its correlation coefficient R2 over the mean latitudinal region 27.5°N 
correspond to each month, cold season, hot season and all the period (2005 –2016) over Egypt.
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TABLE I.  VALUES OF THE A AND B COEFFICIENTS IN THE 

EQUATION OMI-AI =A*LONG +B AND ITS CORRELATION COEFFICIENT R
2
 

OVER THE MEAN LATITUDINAL REGION 27.5°N CORRESPOND TO EACH 

MONTH, COLD SEASON, HOT SEASON AND ALL THE PERIOD (2005 – 

2016) OVER EGYPT. 

Period  Eq.  OMI-AI =a*Long +b R² 

January OMI-AI = -0.0539*Long + 2.6702 0.61 

February OMI-AI = -0.0703*Long + 3.2828 0.71 

March OMI-AI = -0.0773*Long + 3.6848 0.63 

April OMI-AI = -0.0667*Long + 3.5898 0.51 

May OMI-AI = -0.0629*Long + 3.4717 0.38 

June OMI-AI = -0.0614*Long + 3.3646 0.41 

July OMI-AI = -0.0461*Long + 2.6244 0.42 

August OMI-AI = -0.0447*Long + 2.5437 0.35 

September OMI-AI = -0.0655*Long + 3.2192 0.39 

October OMI-AI = -0.0593*Long + 2.9435 0.49 

November OMI-AI = -0.0544*Long + 2.7018 0.29 

December OMI-AI = -0.0477*Long + 2.5088 0.32 

Cold 
season 

OMI-AI = -0.0585*Long + 2.8877 0.40 

Hot season OMI-AI = -0.0598*Long + 3.2132 0.32 

All Period OMI-AI = -0.0592*Long + 3.0505 0.29 

CONCLUSION 

12-years (2005 to 2016) Spatial-Temporal 
Variability of OMI-AI over Egypt (22°–31°N, 24°–36°E) 
were analyzed. Daily time series OMI-AI variations 
reflect increase with the time, daily average variation 
has generally high values during hot seasons, and low 
values during cold seasons. Daily OMI-AI average 
spatial distribution over Egypt is mapped onto a grid of 
1° in longitude by 1° in latitude. Notice that a significant 
match in spatial distribution. So, in order to analyze the 
OMI-AI east-to-west gradient over Egypt; we study the 
longitudinal variation (at lat. 27.5°N) of the OMI-AI 
values. OMI-AI does not depend on longitude or 
latitude, but only the areas which are active dust 
sources. So, we examining longitudinal trends to 
present it in a scientific paper these detailed 
correlations are not wrong, but of minor importance; 
nobody can use such equations in order to estimate 
OMI-AI in a specific area. 
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