
Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1671

A Peer-To-Peer Architecture For Real-Time
Communication Using Webrtc

Edim Azom Emmanuel

Dept. of Computer Science
University of Calabar,
Calabar, Nigeria

edimemma@gmail.com

Bakwa Dunka Dirting
ICT Directorate

University of Jos, Nigeria
bakwadunka@gmail.com

Abstract—Developments in technology have
provided potentials for better communication
methods. New technologies have emerged to
improve existing communication channels. Some
technologies applied in Real-time communication
come with several challenges such as the need for
additional software plugins and downloads in order
to establish real-time communication, as well as
security issues. Web Real-time Communication
(WebRTC) is a technology that can be harnessed to
overcome these challenges. The aim of this study
is to design a system architecture that applies
WebRTC and other technologies to support peer-
to-peer real-time communication solution for an e-
health application. During the study, different
technologies were identified and integrated with
WebRTC to develop the system architecture.
Qualitative and quantitative data were collected
during the development process. The solution was
able to eliminate the problems associated with
plugins, downloads of third party applications, and
minimise latency, and bandwidth usage and also
established real-time peer-to-peer audio-visual
communication. A WebRTC performance and load
test was carried out on the application using
Blazemeter. The results show that high quality real-
time peer-to-peer communication was established.
The system recorded 16.92 ms transaction
processing time for 1000 Virtual users and a
response time of 25.29 ms for 15 mins uptime.
WebRTC is a viable technology for delivering real-
time peer-to-peer interaction with high quality of
service.

Keywords—Web Real-Time Communication;
Teleconferencing; Peer-To-Peer; MediaStream;
RTCPeerConnection.

I. INTRODUCTION

A major challenge within the web has been the
inability for two web browsers to communicate and
share videos, audios and data without support from
software such as Flash, Java applets, Silverlight or Flex
which are collectively referred to as plugins [1]. As a
result, there has been a progressive effort by Internet
Engineering Task Force (IETF) to specify the protocols
for networking. The Worldwide Web Consortium (W3C)

implemented the JavaScript API in an attempt to bring
the realities of a whole new communication experience
to Internet users as well as the webservers [2]. This
development led to the introduction of a technology
known as Web Real-time Communications (WebRTC).
It is meant to achieve Peer-to-Peer (P2P)
communication within the dependable Web ecosystem.
Prior to the establishment of a P2P communication, a
signalling process was implemented using various
technologies such as Xml HttpRequest (XHR), session
initiation protocol (SIP), Extensible Messaging and
Presence Protocol (XMPP) and WebSocket. Google in
collaboration with IETF, W3C, Mozilla and other
corporations are working on the open source project
[3]. The open source project is meant to help
developers to be able to design and built various
applications that will allow users to communicate by
establishing video conferencing, text chat in the
browser in real-time [4, 5], or to be used with existing
Over The Top (OTT) technologies such as Public
Switch Telephone Network (PSTN) or Voice Over
Internet Protocol (VOIP) [6]. WebRTC is closely similar
to websocket, but websocket opens a pipe of
connection with a server instead of another peer. In
most cases these technologies are used together for
signalling purposes. In chat applications for example,
WebSocket clients first send messages to the server
and the server send the messages to the recipients.
WebRTC promise to provide secured direct P2P
communication between users and free of plug-ins [7].

WebRTC assures a simplified, flexible and cost
effective means of real-time communication for users
without dependence on service providers. A critical
challenge with plug-ins such as Flash, Silverlight, and
Shockwave is the need for downloads each time a
connection is to be established. Plugins can be
problematic during execution, they increase bandwidth,
latency, execution time and speed [8]. The
implementation of video based communication without
the need for plug-ins will eliminate the problems that
are associated with plug-ins as well as impose greater
coordination in communication. Technologies such as
Network Address Translation (NAT), Session Traversal
Utilities for NAT (STUN), Interactive Communication
Establishment (ICE), Session Description Protocol
(SDP), User Datagram Protocol (UDP) formed a
significant part of the system architecture developed

http://www.jmess.org/
mailto:bakwadunka@gmail.com
mailto:bakwadunka@gmail.com

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1672

during this study. The technologies were useful in
supporting real-time media exchange over distances
across platforms [9, 10]. The designed WebRTC
architecture establishes end-to-end encrypted P2P
communication with audio-visual content and data
being transmitted directly. This implementation is
designed to bypass intermediary hardware server and
eliminate security challenges like interception of data
by hackers. This unique feature makes the difference
between WebRTC and other RTCs such as Skype.

Although Skype is a great communication service, it

is proprietary and lacks the direct P2P ability, as well as
a credible security feature found in WebRTC. Peer-to-
Peer also enable user’s data to be encrypted [11], safe,
and cannot be compromised. A peer–to-peer
connection can be credible because it is able to bypass
all the problems associated with plug-ins. Factors such
as latency, bandwidth and memory utilisation as well as
support for anonymity are supported in WebRTC. In
order to implement the designed system architecture in
this study, a P2P e-health application was developed
and evaluated. The application was deployed and
tested on the Heroku platform. The open source
Heroku platform as a service (PaaS) was also used to
host the application and also for user evaluation.
WebRTC Technology showed great potentials for
providing peer-to-peer real-time communication
between users [12].

WebRTC is not a service nor an application, rather,

it is a technology without installation support for its
components like media engine or codec. This factor
may likely change the technology market in future due
to the speed of adoption of WebRTC by large firms.

II. LITERATURE REVIEW

Most researchers describe WebRTC as “Skype-like”
technology, but Skype has far existed before WebRTC
and the two are completely incomparable. Despite the
dominance of Skype in real-time communication
industry, with over a billion subscribers, Skype still has
certain drawbacks. It is proprietary and users must
install supporting software or plug-ins such as Flash for
it to work properly. The plug-ins used along with Skype
can impose security concerns within the system. Skype
also adopted the client server architecture which
makes it resource intensive [13]. WebRTC also uses
peer topology with less overhead. It is an open-
standard / open-protocol descendant of FreeBSD
media engine [14]. This means that all the real-time
capabilities that existed in Flash plugin have been
made available natively in WebRTC-compatible
browsers so that developers can use the technology to
develop various real-time solutions with ease [15, 3].

A. Communication Technology Issues and
Remedies

One challenge with Internet communication before
the emergence of WebRTC is the dependence on
service providers. Before WebRTC was introduced for
real-time video communications, vendors such as

public switch telephone networks (PSTN) had used
more intricate communication processes. Their clients
must participate as members of a separate PSTN IP
based community. This membership is maintained by a
service provider who delivers basic rudimentary
necessities. There must also be an assurance that
each telephone number is unique for each physical
location i.e. a mobile device must be associated with a
unique user or service. These types of communication
may also require participants to subscribe or buy a
product, while others in addition may require the
participants to download plugin before multimedia
contents are delivered appropriately. For example
WebEX and skype. These cases required third party
applications, thereby limiting the scalability and
diversity of communication. With WebRTC each
website is essentially its own "service provider", without
the need for any relationship with a party outside of
itself and the user establishing the communication.

The issue of lack of trust during Installation of third

party software or plugins is a big concern. This is
because these technologies can surreptitiously
introduce malicious software and malware. This may
pose technical problems with the application. WebRTC
is a technology that can be used to overcome the
problems associated with plugins installation. Another
problem is the lack of a standardised real-time media
engine which can be access freely through a simple
secured hypertext transfer protocol (HTTPS). In
addition, security flaws or potential vulnerabilities in
most browsers are programmed to be automatically
updated when discovered and sometimes fixed in
newer versions. Similarly, a WebRTC browser
implementation can easily be fixed rapidly as compared
to traditional applications such as Voice over Internet
Protocol (VoIP) application. The complex VoIP
addresses similar problems posed by malicious
software by developing patches to address the security
flaws. This often take much time. The importance
placed on browsers are generally huge due to their
ubiquitous nature and speed of information accessed
[16].

Skype uses a domain name server (DNS), and this

may cause the decryption keys of media contents
conveyed through their service to be intercepted.
WebRTC ensures encryption and authentication of
voice, video and data by default. This is achieved
through Datagram Transport Layer Security (DTLS)
and secure real-time protocol (SRTP). It is used to
prevent eavesdropping and recording of the voice and
video data in WiFi networks.

WebRTC does not hinder support for other
communication and collaboration protocols. This is also
a major consideration for a reliable session
establishment using Network Address Translators
(NAT). This is important because it avoids delays of
responses from servers and drastically reduces factors
such as server load, latency and intensifies quality.
This feature is good because it helps in the
development of customized applications that allow

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1673

others vendors to initiate communications session with
WebRTC applications. This unique achievement
realized with WebRTC is not the same with skype.
Application developed using WebRTC allows
participants to join the interactions from any site without
having to undergo separate registrations or bear cost
as a result of joining the interactions like it is
experienced with linkedln or google for federation.

B. WebRTC Implementation API

The impact of WebRTC can be viewed from different
angles. It can be viewed in terms of the protocol stack,
Codec, SDP and signalling [17]. It can also be viewed
in terms of the API [18]. WebRTC relies on three
implementation APIs which performs different roles to
enable real-time communication within any web
application [3]. They include: media engine,
RTCPeerConnection and RTCDataChannel.

Media Engine (getUserMedia)-The media engine
enables the browser to access the user media such as
microphone and camera. This API is also part of
HTML5 used in accessing hardware directly.
getUserMedia avoids the use of external codec to
capture audio or video data.

RTCPeerConnection - An RTCPeerConnection
makes the actual WebRTC connection possible, while
WebRTC actually handles the efficient streaming of
data between two peers. Hence, for a caller to initiate
a connection with a remote party, the browser must
begin by instantiating an RTCPeerConnection object.
This API sends the real-time media data and it is
responsible for managing the full life-cycle of each
peer-to-peer connection, encapsulates all the
connection setup and management, and its state within
a single easy-to-use interface [19].

RTCDataChannel - The RTCDataChannel is an API
that is offered as part of WebRTC designed to
exchange arbitrary data between peers.
RTCDataChannel acts like the well-known WebSocket,
but offers a customizable transport protocol. It is useful
in many applications such as game applications, file
sharing and text chat applications.

C. Internal WebRTC Architecture and Standards

The inherent WebRTC architecture consist of a
Web API for developers. It also contains a platform for
developers to handle issues relating to capturing and
rendering hooks [20]. These layers are mandated to
work across browsers and also on different platforms.
The Web API layer present the web developers with a
RTCPeerConnection, RTCDataChannel, and
MediaStrean objects.

The WebRTC native C++ API allows an easy

implementation of the API for different browsers. It
consist of a session management and signaling
management modules that takes care of session
establishment and signaling that enable developers to
set up calls easily. WebRTC also handles the
implementation of different transport mechanisms. The

architecture also consist of a VoiceEngine and
VideoEngine collectively referred to as the media
engine [21, 22].

The VoiceEngine framework transmit audio

contents from the sound card into the network.
Examples of VoiceEngine include iSAC a wideband
codec, iLBC a narrowband codec and OPUS. iSAC
and iLBC were initially products of the Global IP
Solutions but became part of WebRTC in 2011. These
codecs basically manages audio streams [23]. The
VoiceEngine provides features to keep voice latency
and bandwidth in microphones at a low level, while
retaining high quality. It include dynamic jitter buffer
and error concealment algorithm used for concealing
the negative effects of network and packet losses. It
also handles the negative effect of echo cancellation,
VAD, noise reduction, compression, encryption as well
as the statistics [24, 25].

VideoEngine framework controls bi-directional
movement of video contents from camera to the
network and from network to the users screen. It
includes features for camera image capturing, video
processing, and video image enhancement. It also
provide the Dynamic Jitter Buffer to help increase
video quality and conceal any de-jitter, packet loss,
and Bandwidth Management. The video codec include
VP8 and H.264 [26]. Fig. 1 shows the internal
WebRTC voice and video codecs being part of the
internal architecture.

Fig. 1. Built in audio and video WebRTC engines [27](Ilya,
2013)

D. WebRTC Protocol Stack

The core working philosophies of the media engine
cannot be achieved without the WebRTC protocol
stack presented in Fig. 2. The components of the stack
include ICE, STUN, and TURN used for network
address translation (NAT). A NAT basically establishes
and maintain a peer-to-peer connection over UDP
transport protocol. UDP controls the delivery of packets
of media streams also known as the transport channel.
Data transfer is achieved through the DTLS component
which secures media contents by mandatorily
encrypting the data. DTLS is equivalent to TLS but

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1674

works only with UDP. The SCTP and SRTP are the
application protocols used in multiplexing the different
streams, data framing and to provide flow and
congestion control.

SDP: Session Description Protocol - Participating
peers needs a way to exchange call setup information.
This is where SDP comes in. SDP holds basic
metadata about a browser prior to peer connection.
The new sessions are announced by initiation,
invitation and exchange of information. The information
to be exchanged include; Video and audio media
capabilities, codecs information, user information
which include IP address and port numbers, secured
RTP P2P data transmission protocol, available
bandwidth, session features such as name, identifier
and active time.

ICE: Interactive Connectivity Establishment -

According to [26] and [28], ICE is used to enable

participating peers to understand how to exchange

media data. ICE factors out the best path for such

communication based on the information that is

interchanged between peers via wired or wireless

network interfaces. In trying to simplify the process of

finding the best path through NAT, ICE chooses the

most efficient algorithm for NAT when it attempts to

create a connection using the host IP address and port

obtained via the Operating System and the device

network interface card. If this attempt fails due to the

peer being behind NAT, in this case, ICE uses STUN

server to generate an equivalent public or external IP

address. And if this also fails, a TURN server will be

used to route the public IP over the other peer’s device.

NAT dynamically converts private IP address into a

public IP address when an outbound request is passed

through. Similarly, inbound requests to a public IP are

converted back into a private IP to ensure correct

routing on the internal network. This implies that private

IPs alone are often not enough to establish a

connection to another peer.

STUN: Session Traversal Utilities for NAT - In order

to perform P2P communication, both parties require at

least the knowledge of their peer's IP address and the

assigned UDP port. As a result, a certain amount of

information exchange is necessary before WebRTC

communication can be established. STUN server are

used freely by each peer to determine their public IP

address and ports. STUN uses stun.l.google.com to

obtain an API key.

TURN: Traversal Using Relays around NAT - TURN

servers are used as a fallback preference where STUN

fails in establishing P2P communication. TURN server

works by relaying traffic between peers. The WebRTC

communication can be ensured, but can suffer

degradations of media quality and latency. Though they

guarantee better connection establishment in whatever

user’s environments. TURN impose more overhead on

bandwidth especially for simultaneous calls routed

through the server. TURN server is not completely free.

Fig. 2. WebRTC Protocol Stack [27]

UDP: WEBRTC Real-time transport protocols -
Real-time communication is a time critical activity that
may result in intermittent packet losses during video
streaming. The WebRTC audio and video codecs has
overcome this challenge by implementing various logic
to recover from losses or packets delays. And at the
same time, considers timeliness and low latency in data
transmission as major factors. WebRTC considers
these factors more important than reliability of data.
This is the main reason why UDP protocol is the
preferred option over TCP for delivering real-time data.
For TCP, it delivers reliable, and ordered stream of
data. For instance, if an intermediate packet is lost,
then TCP will buffer all the packets after it, wait for a
retransmission, and then delivers the stream in order to
recover. While UDP offers No guarantee of message
delivery or order of delivery, No acknowledgments,
retransmissions, or timeouts, No packet sequence
numbers, no head-of-line blocking, No connection state
tracking, establishment or teardown state machines,
congestion control, built-in client or network feedback
mechanisms. As a result, UDP offers no reliability
promise. UDP transport protocol therefore delivers
each packet to the target application the moment it is
sent. In effect, it is a thin wrapper around the best
delivery model effort offered by the IP layer of the
network stacks.

WebRTC uses UDP at the transport layer for
transportation of video streams since latency,
timeliness and bandwidth are critical. WebRTC
requires encryption of all media, the gaps within UDP
are filled by additional protocols implemented on top of
UDP, such as SRTP and DTLS. SRTP is used to
transport audio and video streams, while DTLS is
needed for encryption of every data while on transit as
required by WebRTC. TLS would have been the best
protocol of choice, but because it cannot be used on
UDP. It is rather used on a reliable protocol such as
TCP. DTLS has been introduced to offer an equivalent
security as TLS. It also offer more reliable delivery of
handshake records to negotiate the tunnel and in order,
and it is also fragmentation friendly. This is why it is
able to fix the problems with TLS. DTLS negotiates the
secret keys for encrypting media data and for secure

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1675

transport of application data. SCTP is used for
application data transport [3].

E. WebRTC Communication Topology

There are two communication topology that are
useful in setting up calls, and are used as the situation
demands. These include the trapezoid Model and the
triangle Model.

The trapezoid Model - This model allows browsers
to run on separate web servers or gateways using any
kind of signaling mechanism such as SIP, Jingle or
other proprietary protocol. This communication model
is important because different corporations will
synchronize their communication and avoid duplication
of functions for their various web applications, such as
sharing the same address space for each of their client.
This type of model are applied for mobile phone
numbers subscribers such as MTN and GLO mobile
networks. The signaling process is set up to use HTTP
or WebSocket transport protocol for communications
unlike WebRTC which allows direct communication
between browsers. This model may incur more
overhead in terms of bandwidth, latency and resources
consumption.

Open triangle Model -. The Open triangle model is

arranged in such a way that two clients can share the
same web server [29]. The web server stands in the
center to facilitate the connection between the Peers
and to establish voice, video and data communication.
Skype is an example of this type of model. Skype
facilitates all the communication and as well
coordinating all the addresses. The peers do not have
to federate with individual webservers. The triangle
model also has a closed triangle variant. WebRTC is
another example of this model. The key points about
this model is that, 1) the single server coordinates
communication, that is, the signaling process, but the
model do not participate in the communication, 2) any
kind of server can stand in the middle to coordinate the
communication, 3) the media contents are passed
directly the advantages are for low latency, speed, low
bandwidth, and security, 4) media contents can still
pass through firewall installed between the peers and
signaling layer.

III. RESEARCH METHOD

This study was conducted through an iterative process.
The first step was to identify the required technologies
including WebRTC technologies for the design of the
system architecture. Also at this stage, an E-health
application was considered for real-time
communication and implementation of the WebRTC
and other technologies. The potential users were also
identified and data was collected from them through
interviews. The second step involved the design of the
architecture of the real-time communication system.
The next step involved the development of the
application and testing. The application development
process was iterative. The application was also
evaluated by the potential users. The final process in

the study was to perform analysis of the test results to
determine the system was carrying out real-time
interactions.

A. Survey of Required Technologies

One important consideration in the design of the
real-time application was to make it simple, testable
and a reliable application. The study focussed on
providing a technical solution using WebRTC
technology to deliver real-time interactions to the users.
Other technologies that were identified as suitable
solution to the system requirements include MongoDB,
ExpressJS, AngularJS, Node.JS (M.E.A.N) stack
technology. The backend (server) was implemented
with websockets server written in Node.JS. MongoDB
was implemented to house the various users and meta-
data documents in BSON format. A tool called
MongoLab was useful for organising a readable JSON
display for mongoDB data. The interfaces were
developed using JADE view as a default frontend
replacement for Angular.JS.

B. Design of the System Architecture

The design stage is a significant stage that provides
a description guiding the process and method that were
applied in this research. The research design for this
study followed the planning / listening, design, coding,
testing and implementation phases. The WebRTC
communicating platform was also evaluated. In the
planning and listening stage, the researchers followed
the listening concept of the agile method to extract the
basic requirements. It involved the identification of
specifications typical for determining in very simple
terms how the real-time application should work. The
system design and coding of major components was
achieved by creating a simple M-V-C architecture for
the proposed system. This involved writing program
and logic crucial in creating the quality application.

C. M-V-C Controller

The prototype for building the application was based
on the MVC architecture. We may think of a Model as
data or information store, the View as the layout of the
user interfaces that interchanges data, and the
Controller as the logic that handles the control flow
including any business logic needed to build the Model
and pass the model data to the view for presentation to
its end users. In the design of the system, a route
component was added between the controllers and the
mandated user’s browsers. The route was written with
Express.JS framework for Node.JS necessary in order
to coordinates interactions. One common strategy was
also to implement a representational state transfer
RESTful API which feeds a Single Page Application
(SPA). The REST component provided good
representation, visibility, and performance through the
use of HTTP/S method while supporting simpler
internal communication and control flow. In the design,
an HTTP request was routed to the appropriate
controller action which in turn processes the various
information then returns the appropriate model and
view for rendering to the other peer. Thus, in this
implementation the M-V-C was instrumental in handling

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1676

the logic, visualization and data. Fig. 3 presents the
MVC architecture and MEAN stack implementation of
our prototype.

Fig. 3. MVC – MEAN architecture.

D. The system architecture

This section explains the implementation of the
peer-to-peer technology. The WebRTC P2P
architecture mentioned in the previous section was left
out specifically for this section because it is part of the
implementation of this study.

The generic architecture of the system adapts to the
peer-to-peer architecture. Two peers will be able to
communicate with each other after a signaling process
has been completed. In Fig. 4, WebRTC is designed to
sit within the browsers to ensure direct media
communication in a peer-to-peer (P2P) fashion with no
plugins. The accomplishment of communication
between peers must begin with an attempt to initiate
and facilitates familiarity between the callers. This is
explained by the process of Offer and Answer.

Fig. 4. The P2P system architecture

The minimum standard infrastructures necessary in
set up the above WebRTC architecture include 1) the
client’s browsers, the HTTP signalling written in
node.JS. It is required to introduce the peers together.
The STUN server was used to find an optimal path to

relay the media. Other infrastructures that could be
used but beyond the scope of this study include
Asterisk, SFU or Multipoint Control Unit (MCU). These
facilities are used for large multiparty video
conferencing, recording and gateways.

E. Description of the Generic Architecture

The few lines of the implemented codes snippet
captured the part that describes the minimum functions
for setting-up a successful video conferencing. Google
Chrome and Mozilla Firefox browsers were used to
enables access to media devices. The actual
permission captured during the implementing are
described in Figure. To establish the connection
between two peers, a Websocket signalling layer was
implemented using socket.io library. This layer was
necessary for the signalling server to communicate with
the peers freely. The server is written in Node.Js. The
code snippet below captures Node.JS server and
socket.IO initialization process.
 var app = require('../app');
 var debug = require('debug')('hrtc:server');
 var http = require('http');

 var port = normalizePort(process.env.PORT ||
'3000');

 app.set('port', port);
 var server = http.createServer(app);
 var io = require('socket.io').listen(server);
 require('../sockets/base')(io);
 server.listen(port);
 server.on('error', onError);
 server.on('listening', onListening);
 var socket = require('socket.io');

 …

Again, the implementation of the STUN server based
on this study is described using the codes snippet
below.
 var peer = new Peer('#{session.userId}',
 key: 'he3gxx6jfoxyldi',
 debug: 3,
 config: {'iceServers' : [
 {url: 'stun:stun.l.google.com:19302'}
]}
 });
 peer.on('open', function(){
 $('#my-id').text(peer.id);
 });
 peer.on('call', function(call){
 …
The frontend is implemented using the Jade View
Engine a default framework for AngularJS. This is
initiated with the code snippet below
 app.set ('views', path.join (__dirname, 'views'));

 app.set ('view engine', 'jade');

F. The Offer, Answer, Handshake and Connection Process

When the signalling process first starts, an offer is
created by say the first peer who is the initiator of the
call, the Offer contains a session description called
SDP, this needs to be delivered to the second peer i.e.
the person receiving the call. The second peer

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1677

responds with an answer message, which contains an
SDP description about the other end. This now signify
that the two peers now know certain details regarding
each other to be used for the call example of these
details include video parameters, codec information,
transport protocols, ports and codecs used. One
problem is that the two peers need to also understand
how to transmit the media data, this is realised through
the use of Interactive Connectivity Establishment (ICE).
ICE figures out the best path to communicate between
the two peers based on the information gathered from
each peer. For example: through wireless or wired
network interfaces. ICE is a combination of IP address,
port, and transport protocol. The handshake model
enables exchange of networking information with
participating peers. Fig. 5. describes the entire Offer,
Answer, Handshake and Connection implemented.

Fig. 5. Offer, Answer and connection process for the
application

In Fig. 5, in order to connect to another peer, its
location on the web need to be known. This is a logical
process where both peers need to first create
an RTCPeerConnection object and obtain a Session
Description, an object that indicates what kind of data
they want to send to the other peer through the peer-to-
peer connection. They do this by calling the built-in
methods of the RTCPeerConnection object. The
initiator of the video call will obtain a self-session
description called the offer and then set it as a local
description by invoking the method localDescription,
then sends the offer to the other peer through the
signaling channel. The other client receives the offer
and set it as their remoteDescription, they will also
obtain their own session description called the answer
and set it as their localDescription, and send it back to
the initiator through the signaling channel. The initiator
receives the answer and sets their own description
using the remoteDescription method.

G. Application Prototyping and Testing

The actual structure describing the M-V-C
directories and design prototype of the application is
described in Fig. 6.

Fig. 6. The application directory in M-V-C

The technologies and design specifications that was
put into consideration for this interactive system include
a peer–to–peer network architecture, Heroku platform
as a service (PaaS) was used for cloud hosting. Some
operational and internal design specifications include
the creation of an updated node package manager
(NPM) modules, capturing the environment variables,
organizing the models, views and controllers M-V-C
logic as well as creating the built-in and user defined
middleware, routes, ExpressJS, WebRTC integration
logic by providing internal implementations for SDP,
NAT traversal, ICE, STUN servers integration, codecs,
User Datagram Protocol (UDP) transport protocol,
support for full duplex communication using
websockets. SDP signaling and other meta-data in the
implementation of this study were transmitted using
javaScript object notation (JSON) format. Finally the
logic for including the mandated WebRTC browser
options were created.

H. WebRTC Video Conferencing Topology

The signaling process happens via a server which

is separate from WebRTC, this is important philosophy

because it gives room for implementers to choose

whatever signalling protocol they so desire which in-

turn gives room for use with any kind of signalling

protocol and communication end points such as

Session initiation protocols (SIP), extensible

messaging and presence protocol (XMPP) Jingle and

most other over the top (OTT) technologies such as

Public Switch Telephone Network (PSTN) [4, 15, 30].

I. Implementation of Mean Stack Component

Since one aim of this study is to enhance better and
timely interactions, the design of the WebRTC
videoconferences application was implemented
alongside MongoDB, ExpressJS, AngularJS, Node.JS
(M.E.A.N) stack technologies. M.E.A.N stack improves
on some limitations found in the current LAMP stack
which existed about 2.5 decades ago. This
components of the MEAN stack offers more
convenience in this application in terms of speed and

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1678

real-time application. The MEAN stack components
has many benefits which include: Same language of
data transfer across every layer of MEAN in the JSON
format, use of superfast V8 chromes engine, Node.js is
Event-Driven and conforms to a non-blocking
capability. These benefits can go on but finally narrows
down to optimizing throughputs and ease coding effort
to make for a better version of a real-time video
conferencing application.

J. Deployment on the Heroku Platform and Evaluation

Heroku platform as a service (PaaS) was chosen for
the deployment platform because it allow developers to
focus on building, running, scaling, storage and better
management of the application. It helps in reducing
cost, better access to developer infrastructure and
support for quality of service. We considered the
benefits of allowing developers to concentrate on the
sole responsibility of development rather than
concentrating on both development and hosting
infrastructures. This platform caters for hardware and
software infrastructure, it uses tools that the developer
is aware of, an example is the Git Bash command line
Interface (CLI) for passing commands for development,
manipulating, monitoring and hosting purposes.
Effortless scaling is another benefit which allow
developers to quickly scale applications dynamically
through their interface matrix system or through
passing commands. The Heroku infrastructure has
dramatically reduce the time and cost for developers.
Heroku supports various platforms and has less to do
with incompatibility issues. It means application
developed with various languages can enjoys the same
services. The result of deployment on heroku PaaS
result was achieved using the code snippet.

$ heroku login // login into the heroku account
and install the toolbelt

 git init
 heroku create app_name
 git remote -v
 git add.

git commit –m”also create a file in the directory
with content www:node bin/www”

 git push heroku master

K. Application Testing

In order to determine the practicality of the
application on the local area network (LAN), a test was
carried out with several peers (users) within the
University of Calabar. Thereafter, Blazemeter “a tool for
generating load testing and performance matrix” was
used to test for performance of the application
prototype. WebRTC internals and the open source
Heroku dashboard were used to measure the
performance of the application based on real live test.
Parameters such as transaction processing time (TPS),
Virtual users (VU), Errors, Response time / Latency,
Hits, Bandwidth, and memory usage were measured
and captured. Several of these tests indices were
displayed graphically and reported in the result section.
The initial configuration were as follows: Engine:
console only (1 console, 0 engine), RAMP-up: 300-
1200, users / peers 1-1000, Duration: 15-30 minutes,

iteration: Test continues for ever. This simple setup is
targeted towards meeting up with the performance
goals.

IV. RESULTS AND ANALYSIS

Fig. 7 presents the e-health application user interface.
The interface shows a video conferencing
communication between two users. The users are
engaged in real-time interactions. It is a direct
connection between the users’ browsers devoid of any
conventional DNS server connection between the
users. The users’ browsers did not need the support of
any third party plug-ins or downloaded software such
as flash for the video to play on both browsers. The
connection is possible because the getUserMedia()
method establish access to the cameras and
microphones. Once the video conferencing button is
enabled by the users, WebRTC mandate a request for
permission to use media devices. The users can then
take any of the options to “allow” or “block” the request.
Taking the “allow ” option means that the system will
have access to the users’ camera and microphone for
real-time interactions. The application was tested and
ran on Firefox, Opera and Google Chrome browsers.

Fig. 7. Real-time video communication between peers.

A. System Performance Analysis

The Graph in Fig. 8, shows the performance of the
system. The different curves in the graph represent
different performance attributes from the real-time
communication system. The result shows that real-time
communication was established and the system
performed adequately.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1679

The system recorded an average throughput or
Transactions processing Time (TPS) of 16.92ms for
1000 VUs and a response time of 25.9ms for 15
minutes uptime of the load test.

The throughput is directly proportional to the load
or number of users and the type of activity performed
on the system (e.g. video chart). This means that the
system can reasonably sustain increasing load of
1000VUs with very high throughput. The high and low
movement of some of the curves indicates fluctuations
with server response during loading of data. The
average response time based on the number of users
is an indication that the system has the capacity to
serve these number of users with the required quality
of service. The response time measured in seconds is
a very critical factor in user experience because it
indicates the user waiting time. This is the time taken
by the client to connect to the real-time communication
system with a request and also to receive the desired
media response as the load increases. Based on the
recorded system response time, the users will
experience high quality real-time interactions with their
peers. At the time of consideration, the system
recorded minimum errors (4.69%). This points to the
fact that the technologies applied in the design and
implementation of the system are reliable and will be
able to provide the expected service.

The resource utilization graph was obtained from

Heroku matrix dashboard. This shows the utilization of
resources such as the CPU, memory and the network.
The level of utilization of these resources can adversely
affect the performance of the system. From the results,
it is evident that the network, memory, CPU and VU
connection shows that these resources are adequately
being used during the real-time interactions.

It was found that the WebRTC and other

technologies put together to design the architecture of
the system successfully enabled real-time
communication between peers without the need for
plugins and other downloaded applications needed to
support the establishment of communication. This will
greatly increase data security from eavesdropping,
unauthorized access and other server related security
issues. Also, the overall cost of communication is
greatly reduces for the users. The STUN server within
the WebRTC is freely used by each user to establish
the communication between them. This reduces the
cost of communication.

B. WebRTC Internal Output

The overall benefit of implementing WebRTC on
recent browsers is for adaption and to produce better
quality media. When there is an established
communication between two peers, WebRTC records
media information during the session. These are output
that shows the statistics of the processes and
performance of the system during the communication
session. These media information is presented next.

Fig. 9 shows the WebRTC STUN server parameters
that indicate the actual processes performed during the
communication session between peers. These include
request and responses sent and received information,
the timestamp, the amount of packets sent and
received, the bytes sent and received and others.
STUN servers also display the round trip time (RTT)
obtained from the last STUN request displayed as
googRtt report. ICE server displays various parameters
such as localCandidateId, remoteCandidateId. This
indicates the l local and remote ICE candidates during
the real-time interactions. The information from the
STUN and ICE server in the WebRTC shows that
communication was established between peers. One
important point about this information from webrtc is
that, when there is a problem with media transfer, this
is easily reported here. Information regarding Jitter

Fig. 8. Performance graph for 1000 VUs

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1680

received, jitter buffer, frame size and network are also
captured. The information in Fig. 9 also presents the
amount of data packets that was sent and received
through the video channel in WebRTC. And so, the
information showed that the STUN server enabled the
remote ICE candidates to interact in real-time.

Fig. 9. WebRTC STUN server performance Output

Fig. 10 also presents statistics from the WebRTC

STUN and ICE server for the communication session
between the two peers with one of the peer using
Google Chrome and the other Firefox web browser.
Different WebRTC statistics can be provided for
successful and unsuccessful communication. In this
case successful communication took place as indicated
by the createOffer, CreateOfferOnSuccess,
setLocalDescription, and addIceCandidate parameters
in Fig. 10. The results show an optimized outcome of
the getUserMedia and RTCpeerConnection events in
WebRTC and breaks down the complex process of
ICE, SDP and STUN processes. The core of
RTCpeerConnection include ICE keep-alives to
guarantee that UDP do not easily expires. Once
authorized, they will ensure that user agents are
actively working to send and receive media. Each
candidate involved in the communication process is
presented as “a=candidate”. This is similar to a
container comprising major information that need to be
known to other peers to facilitate the connection. It
includes the IP address, port, priority, transport protocol
and component id.

As soon as the Offer and Answer processes are
completed, ICE accomplishes its task, while also
verifying and implementing connectivity. These
processes are indicated with symbols (Fig. 10) such as:
1) v=0 – : defines the SDP version that is used. 2) s=-
: indicates the session name 3) t=0 0 :Refers to the
session start and end times. The second 0 describes
the ending time that the session is valid at but not
necessary limited to a specific time 4)
a=group:BUNDLE video: This shows that the

communicating browsers support each other for video
communication and that they are capable of
multiplexing the video at hand with the same RTP
session. The BUNDLE grouping displayed here is a
video line associated with the SDP, it can also be an
audio. 5) a=msid-semantic: WMS which is a unique
identifier for the WebRTC Media Stream (WMS) during
the PeerConnection’s life. The digits 100 101 116 117
96 97 99 88 indicates the video format that was sent by
the browser to its communicating peer 6) c=IN IP4
0.0.0.0., indicates the IP of the target source and
destination used during the interaction session. It also
specified the use of RTCP for multiplexing. Fig.10
proved that there was exchange of data between two
users in different locations. The information proved that
real-time video based interactions between peers have
taken place. Also, the system architecture developed
using WebRTC and other technologies was able to
deliver real-time video based communication between
two users.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1681

Fig. 10. WebRTC Internal Parameters for Actual Video
Communication

Fig. 11 presents the graphical details of the actual

amount of data in bits that were sent and received per

second and the data packets sent and received per

second during the interactions between the peers. The

graphs also shows the time of interactions. The

WebRTC and other technologies used to develop the

system architecture provided the users video based

real-time interactions at reduced data cost and with

quality of service.

Fig. 11. Statistical Graphs showing exchange of data
between peers.

This was done without browser plugins and additional

plug-in software like flash and downloads as necessary

requirements to enhance audio and video based

interactions. The elimination of these requirements

means that the conversations and data are better

secured from attacks and eave dropping.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1682

V. DISCUSSION

WebRTC is a new technology that is still under
development. It is a technology that has potentials for
providing quality of service and enhance user
experience on browsers. In this study, a system
architecture for real-time audio and video based
interactions was developed. The architecture combines
WebRTC and M.E.A.N stack components. An e-health
application was developed to evaluate the architecture
[12]. These technologies were useful in building a
functional cross platform solution that implemented
minimum standard architecture. From the real-world
perspective, this project did not cover everything about
the capabilities of the technologies. The system that
was developed was adequately tested and proved to
work as expected across different browsers, although
it is possible to experience unexpected errors or
changes as browsers are modified or as WebRTC
implements new features.

The system performed its function of establishing
real-time video conferencing between peers in remote
locations using WebRTC supported browsers. The
peer-to-peer communication was made possible after a
signalling process that introduces the peers together
has been established with Node.JS through HTTP
unlike the client-server architecture. The advantages of
this implementation include speed of delivery, secured
from interception or intruders, reduced latency and
bandwidth. Also, the communication was achieved
using end-to-end encryption. An e-health application
was created using WebRTC and M.E.A.N stack without
installation of custom drivers, without plug-ins and
software downloads.

The application was hosted on the Heroku PaaS

cloud platform as part of the deployment process. A
flexible deployment platform was the target in this study
because of its benefits. A load test was carried out
using blazemeter. The results shows that there was
real-time interactions between remote peers. Audio
and video based data was sent and received at both
ends. Factors that could affect the speed of any user
request include the CPU speed and the network
strength or quality of the network. The user interface for
interaction was design with simplicity and ease of use.
This will enhance users’ experience.

VI. CONCLUSION

In this study, a practical experience in the analysis
and design of a system architecture for real-time
communication has been presented. The architecture
was implemented using WebRTC with its inherent
features and other technologies in bringing the benefit
and experience of a more flexible, speedy and cost
effective real-time communication to all Internet users.
WebRTC technology will be available through user’s
browsers to minimize installation and use of plugins in
supporting communication, it will also improve the
security of multimedia content and help developers to
create better real-time video communication solutions.
Apart from improving user experience, quality of

service, it will also reduce cost of communication, and
provide better security of user data and information.

The implementation of this new technology will help in
breaking the monopoly that has existed with under the
control of most OTT corporations and bring innovative
opportunities to synchronize with existing and future
applications. WebRTC is still in its infancy stage, more
development is in progress to decide on certain
standardization policies that will improve the
technology and provide quality of service.

REFERENCES

 [1] C. Chuang-Yen, C. Yen-Lin, T. Pei-Shiun, and Y.
Shyan-Ming, “A Video Conferenceing System Based on
WebRTC for Seniors”, In: Proc. of the 2014 International
Conference on Trustworthy Systems and their
Applications, 51-56. 2014.

[2] R. Manson, “Getting started with WebRTC:
Explore WebRTC for real-time peer-to-peer
communication”, Birmingham, UK: Packt Pub. 2013.

[3] A. B. Johnston, & D. C. Burnett, “WebRTC:
APIs and RTCWEB protocols of the HTML5 real-time
web”. Publ: Digital Codex LLC, ISBN-
13: 978985978808
2014.

[4] S. Loreto, S. P. Romano, and L. Miniero, “Real-
Time Communication with WebRTC: Peer-to-Peer in
the Browser”. O'Reilly Media, UK. ISBN 1491938080
2016.

[5] D. Ristic, “Learning WebRTC: Develop
interactive real-time communication applications with
WebRTC”,. Packt Publishing ISBN: 9781783983667.
2015.

[6] S. Hudson, “Video-to-Video Using WebRTC.
JavaScript Creativity: Exploring the Modern
Capabilities of JavaScript and HTML5”.
Apress Berkely, CA, USA.ISBN:1430259442
9781430259442. 2014.

 [7] Altanai, “WebRTC integrator's guide:
Successfully build your very own scalable WebRTC
infrastructure quickly and efficiently” Birmingham, UK:
Packt Pub. 2014.

[8] S. Dutton, “Real-time communication without
plugins”, Available from:
https://www.html5rocks.com/en/tutorials/webrtc/basics
/ (Accessed: March, 2016). 2012.

[9] B. Patrik, and T. Alexandra, “The Online Paris
Café”, A Master thesis in Department of Computer
science, Electrical and Space engineering. Luleå
University of Technolog. Available from:
http://www.diva-
portal.org/smash/get/diva2:1031094/FULLTEXT02.
2013.

[10] A. Bergkvist, D. C. Burnett, C. Jennings, and
A. Narayanan, “WebRTC 1.0: Real-time
Communication Between Browsers”, Available from:
https://www.w3.org/TR/2012/WD-webrtc-20120821/
(Accessed: March, 2016). 2012.

[11] M. Di Mauro, & M. Longo, “Revealing
Encrypted WebRTC Traffic via Machine Learning

http://www.jmess.org/
http://www.diva-portal.org/smash/get/diva2:1031094/FULLTEXT02
http://www.diva-portal.org/smash/get/diva2:1031094/FULLTEXT02
https://www.w3.org/TR/2012/WD-webrtc-20120821/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 4, April - 2017

www.jmess.org

JMESSP13420330 1683

Tools”. In: Proc. 12th International Joint Conference on
e-Business and Telecommunications (ICETE) IEEE
Conference Publications 4, 259-266. 2015.

[12] D. D. Bakwa and A. E. Edim, “Application Of

M.E.A.N Stack Restive API And WEBRTC In The

Design Of A Real-Time Telemedicine Service”

International Journal of Innovative Research and

Advanced Studies (IJIRAS) 4(3), 311-322. 2017.

[13] B. John, “4 video chat alternatives that beat
Skype”, Available from:
http://www.foxnews.com/tech/2015/10/28/4-video-
chat-alternatives-that-beat-skype.html. (Accessed
June, 2016). 2015.

 [14] K. Shuang, X. Cai, P. Xu, and Q. Jia, “WebCDN:
A Peer-To-Peer Web Browser CDN Based WebRTC”,
In: Yao L., Xie X., Zhang Q., Zomaya A., Jin H. (eds)
Advances in Services Computing. Lecture Notes in
Computer Science, Vol. 9464. Springer, Chan. 2015.

[15] S. Loreto, S. P. Romano, “Real-time
Communication with WebRTC: Peer-to-Peer in the
Browser”, Pub: O'Reilly Media. UK. ISBN: 978-1-4493-
7187-6. 2014a.

[16] A. Gary, “Network Computing” Available from:
http://www.networkcomputing.com/unified-
communications/9-advantages-webrtc/195325984.
(Accessed May, 2016). 2014.

[17] H. W. Barz, H. W. and G. A. Bassett, “WebRTC,
in Multimedia Networks: Protocols, Design, and
Applications”, John Wiley & Sons, Ltd, Chichester, UK.
doi: 10.1002/9781119090151. 2016.

[18] J. C. Zhang, W. Barnes, D. King, “Getting
Started with WebRTC and Test Driven Development”,
Available from
https://medium.com/@coldbrewtesting/getting-started-
with-webrtc-and-test-driven-development-
1cc6eb36ffd#.yswz9omvt (Accessed: Jan. 2017).
2016.

[19] A. W. Sime, “WebRTC: Delivering Telehealth in
the Browser”, Journal of mHealth, 1-2
doi:10.21037/mhealth.2016.03.08. 2016.

[20] A. Arrichiello, “Learning WebRTC application

development. Birmingham”, UK: Packt Pub. 2014.

[21] M. Maruschke, O. Jokisch, M. Meszaros, M., & V.
Iaroshenko, “Review of the Opus Codec in a WebRTC
Scenario for Audio and Speech Communication”, In:
Proc. Speech and Computer International Conference,
SPECOM, Athens, 348-355. 2015.

[22] D. Odell, Using WebRTC for Video Chat. Pro
JavaScript Development, Apress. ISBN: 978-1-4302-
6269-5. 321-339. 2014.

[23] S. Branislav, S. Dragan, & P. Dragan,

“WebRTC technology overview and signaling solution
design and implementation”, In: 38th International
Convention on Information and
CommunicationTechnology, Electronics and

Microelectronics (MIPRO), IEEE Conference
Publications. PP. 1006 – 1009. 2015.

[24] A. Sergiienko, “WebRTC blueprints: Develop
your very own media applications and services using
WebRTC”, Birmingham, UK: Packt Pub. 2014.

[25] A. Sergiienko, WebRTC cookbook: Get to
grips with advanced real-time communication
applications and services on WebRTC with practical,
hands-on recipes. UK: Packt Pub. ISBN:
9781783284450. 2015.

[26] A. Roach, “WebRTC Video Processing and
Codec Requirements”, Available from:
https://tools.ietf.org/html/draft-ietf-rtcweb-overview.
doi:10.17487/rfc7742 (Accessed June, 2016). 2016.

 [27] G. Ilya, “High Performance Browser
Networking”, First Edition. Publisher: O'Reilly Media,
Inc. ISBN: 9781449344757. 2013.

[28] Y. Helsingin, T. Matemaattis-
luonnontieteellinen, L. Tietojenkäsittelytieteen, & A.
Hussain, “WebRTC in presence of NAT, firewalls and
HTTP proxies” Thesis / Dissertation ETD. Available
from: http://hdl.handle.net/10138/153590. 2015.

[29] G. P. Kedar, M. C. Pushpanjali, “WebRTC
Implementation and Architecture Analysis”,
International Journal of Scientific & Engineering
Research, 7(2), 2229-5518. 2016.

 [30] S. Loreto, S. P. Romano, “Real-time
communication with WebRTC”, O'Reilly Media,
Sebastopol, CA. 2014b.

http://www.jmess.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7511913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7511913
http://www.foxnews.com/tech/2015/10/28/4-video-chat-alternatives-that-beat-skype.html
http://www.foxnews.com/tech/2015/10/28/4-video-chat-alternatives-that-beat-skype.html
http://www.networkcomputing.com/unified-communications/9-advantages-webrtc/195325984
http://www.networkcomputing.com/unified-communications/9-advantages-webrtc/195325984
https://medium.com/@coldbrewtesting/getting-started-with-webrtc-and-test-driven-development-1cc6eb36ffd#.yswz9omvt
https://medium.com/@coldbrewtesting/getting-started-with-webrtc-and-test-driven-development-1cc6eb36ffd#.yswz9omvt
https://medium.com/@coldbrewtesting/getting-started-with-webrtc-and-test-driven-development-1cc6eb36ffd#.yswz9omvt
https://tools.ietf.org/html/draft-ietf-rtcweb-overview
http://hdl.handle.net/10138/153590

