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Abstract— Economic globalisation, world’s population 
growth and significant growing of production and 
distribution sites across the globe have resulted in high 
demand for effective planning and optimisation models, 
algorithms and decision support systems for 
operational improvement along Consumer Supply 
Networks (CSNs). This paper reviews the various 
aspects of Consumer Supply Network Planning (CSNP) 
problems: planning scope, decision-making levels, 
constraints, analytical modelling approaches and the 
granularity level. Three groups of common modelling 
methods (i) analytical (ii) simulation (iii) optimisation 
are compared in terms of their advantages and 
limitations in solving the CSNP problems. After 
searching google scholar, a total of 45 journal papers 
within the context of CSNP published between 1999 and 
2016 were identified that used these groups of methods. 
In general, the main concerns with the existing 
methodologies were demonstrated: (1) low complexity 
level, (2) independent exploitation of simulation and 
optimisation methods, (3) disregarding the granularity 
factor in the problem. It was found that methods 
integrate simulation and optimisation techniques are 
relatively superior in addressing the aforementioned 
concerns. 
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I. INTRODUCTION

Due to volatile global market, quick economic 
changes and technological turbulence, business 
leaders recognised that to achieve competitive 
advantages they need to gain more from their Supply 
Chains (SCs). SC, as the name suggests, is referring 
to a serial arrangement of companies that supply 
goods from raw materials to final consumers. Various 
businesses can be spread out in an area that can be 
as vast as a continent. Generally, companies provide 
the same functionality in a serial/parallel arrangement. 
Thus, due to globalisation and complexity of the 
economy, today’s SCs are better characterised as 
Supply Networks (SNs).  

With today’s rapidly changing business 
circumstances, mass customization and higher levels 
of customer service, it is essential for firms to make 
effective decisions faster through leveraging a 
planning model that connects all components of the 
entire SN in a single planning run. This can be 
achieved by the development of advanced plans which 
enables companies to perform material and capacity 

planning simultaneously across multiple facilities over 
multiple horizons in a single planning run, while at the 
same time can provide recommendations about their 
future activities such as the latest demand forecast, 
sales orders, production and distribution status, 
inventory policy, etc. (Pistikopoulos, Georgiadis, & 
Dua, 2008). 

Supply network planning (SNP) is an activity to 
choose, sequence and evaluate future actions for a 
particular decision-making unit and at various planning 
levels that are influenced by the design of SNs 
(Gunther & Meyr, 2009). SNP process is not only 
about decision making, but also about deciding the 
right level of responsiveness and efficiency to target 
and identify how to achieve the goal at the granularity 
needed (Sodhi & C.S. Tang, 2012). SNP is introduced 
by three principal components known as demand 
planning, sales and operation planning, inventory and 
supply planning (Feigin, 2011).  

Consumer Supply Networks (CSNs) are ubiquitous 
in industries such as food and beverages (Bilgen & 
Günther, 2010; Hong, Park, Jang, & Rho, 2005), 
chemical pharmaceutical process (Y. Chen, Mockus, 
Orcun, & Reklaitis, 2012; Niziolek, Chiam, & Yih, 
2012), consumer packaged products (Schmitt & Singh, 
2009), retail (Abolhasani, Marian, & Loung, 2014), etc. 
They are complex networks comprising sets of 
companies working together to supply, manufacture, 
distribute and deliver final goods and services to end-
users (Schwartz, 2008).Typical tasks that are 
performed in the advanced planning process of CSNs 
are daily demand commits, procurement, production, 
distribution, and sales at different granular level 
(Fleischmann, Meyr, & Wagner, 2015). Hence, Owing 
to the large body of academic literature on Consumer 
Supply Network Planning (CSNP), we recognise the 
need to summarise and categorise the research under 
this topic. 

This paper reviews the various aspects of 
Consumer Supply Network Planning (CSNP) 
problems: planning scope, decision-making levels, 
constraints, analytical modelling approaches and the 
granularity level. Three groups of common modelling 
methods (i) analytical (ii) optimisation (iii) simulation 
are compared in terms of their advantages and 
limitations in solving the CSNP problems. In general, 
the main concerns with the existing methodologies 
were demonstrated: (1) low complexity level, (2) 
independent exploitation of simulation and optimisation 
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methods, (3) disregarding the granularity factor in the 
problem. It was found that methods integrate 
simulation and optimisation techniques are relatively 
superior in addressing the aforementioned concerns.  

The remainder of this paper is organised as follow: 
the subsequent section highlights the importance of 
CSNP. Section III outlines methodologies used in 
modelling and optimisation of CSNP problems. Those 
approaches are critically reviewed, and their pros and 
cons are investigated. Section IV presents a synopsis 
of research in CSNP problems. Finally, the paper is 
concluded in section VI.   

II. CONSUMER SUPPLY NETWORK PLANNING 

CSNs continue to be important, regarding 
consumption and monetary value. According to the 
research conducted by Food and Agriculture 
Organization of the United States (FAO), by the year 
2050, the world’s population will reach 9.1 billion, a 
34% increase based on today’s current headcount 
(Alexandratos & Bruinsma, 2012). With this growth in 
population, demand for food will increase by 70% that 
will present many complex challenges to the industry, 
and the associated SNs; many people are likely 
creating demand for a more varied high-quality food 
with more quantity. Hence, to remain competitive in the 
global market, future activities based on the evolution 
of demand must be planned.  

Along with the dynamic structure of the market for 
CSNs, an unexpected crisis such as Tsunami (Japan 
2011), heat wave (southern Indian- 2015) and 
earthquakes (Amatrice -Italy 2016) have put 
businesses on notice that unpredicted events can pose 
serious problems. Hence, companies have to pay 
more attention to their plans to protect their SNs and 
more accurately predict future activities to balance 
supply and demand and substantially improve the 
performance of their SNs. Such plans should be robust 
and granular to cover the nature of CSN.  

A CSN model usually aims at delivering the right 
products at the right time to the right customer and 
with the right quantity. However, in practice at 
maximum, 50% of orders are delivered to end-users 
(Craig, 2016), which can substantially yield raising a 
high level of inefficiencies in CSNs. Hence, it is 
necessary for firms to take advantage of a decision-
making support system that can indicate the.  

A. Planning Scope 

In CSNP problems, issues such as resources 
allocation, demand forecasting, inventory control, and 
transport routeing are investigated. A complex CSN 
plan is influenced by several decisions made 
concurrently at different subunits of the CSN. 
Therefore, the main objective in a CSNP problem is to 
define a set of decision variables, covering the entire 
network, to optimise the output, and to improve the 
overall performance of CSN. However, every single 
decision in CSNs is prone to uncertainty. To this end, 
identification of sources of uncertainty is a crucial task. 
Even a trivial error could result in massive damage. 

B. Uncertainty 

Uncertainty in CSNs can arise from different 
sources. Various categories of uncertainty have 
introduced in the literature which some of the most 
relevant ones are chronologically briefed as follows:  

Subrahmanyam, Pekny, and Reklaitis (1994) 
classify CSN uncertainty from timeframe perspective 
into short-term and long-term planning. Uncertainties 
included in short-term, or operational planning 
concerns with day-to-day processing variations, 
cancelled/rushed orders and equipment failure, etc., 
whereas associated uncertainty with long-term or 
strategic planning refers to raw material/final product 
unit price fluctuations, seasonal demand variations, 
and production rate changes occurring over longer 
periods. However, the missing part of this classification 
is related to the well-received planning horizon by 
researchers known as mid-term or tactical planning 
activities (Eren & Turan; Shabani & Sowlati, 2013). 
Tactical planning involves advanced plans for 
maximum two years (Peidro, Mula, & Poler, 2010). 
They include mid-term activities and issues related to 
CSNP (Tako & Robinson, 2012). The main objective of 
mid-term planning is to find the optimal quantities of 
procurement, production, distribution, inventory level, 
sales and demand backlog associated with each 
facility in the CSN (Peidro, Mula, Poler, & Verdegay, 
2009). 

Later in 2002, Dolgui et al. propose supplying 
reliability, assembly and manufacturing random lead 
times, random level and customers demand as 
sources of uncertainties in Material Required Planning 
(MPR).  

More recently, Lalmazloumian and Wong (2012) 
categorise uncertainties embedded in CSNs into more 
general classifications as supply, 
process/manufacturing, and demand uncertainties. 
Due to late or defective delivery, supplier’s 
performance may vary that cause supply uncertainty. 
In addition, the unreliability of the production process is 
related to process uncertainty. Finally, inaccurate 
forecasting of demand or promptly changes demands 
results in demand uncertainty.  

Most authors adopted the category proposed by 
Chiriac, Ho

..
ltta, Lysy, and Suh (2011) and referred 

CSN uncertainty to timeframe, supply, process, and 
demand. 

The assessment of the uncertainty is very 
challenging; thus, underestimating and misjudging of it 
and its impact on enterprises’ strategies may neither 
safeguard a company against threats nor take 
advantage of opportunities that increase the levels of 
uncertainty (Gupta & Maranas, 2003). Thus, it is 
important to examine the behaviour of CSN systems 
under uncertainty at the individual level. Clearly, each 
behaviour is shown by the number of distinct aspects 
or features known as granularity. 

C. Granularity 

In systems engineering literature, granularity 
translates into the level of details one can decide to put 
in a model or decision-making process where same 
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functionality is expressed with different ‘sized’ designs 
(Unhelkar, 2005). 

According to Bollen, Riden, and Cox (2007) 
granularity of a traceability system reflect the levels 
and size of identifiable units that are handled by the 
particular system. More recently, Karlsen (2011) 
defines granularity as a quantity determined by size 
and level of the traceable units such as size and a 
number of batches in the manufacturing unit.  

Fine granularity deals with smaller unit sizes, and 
coarse granularity is associated with larger unit sizes. 
Without a doubt, the obtained results and conclusions 
of the analysis are substantially influenced by the level 
of granularity. The finer the granularity, the deeper the 
level of detail. Thus, finding the optimal level of 
granularity to design and tune is very challenging. The 
finer granularity designs will take more effort to 
produce and need to pay extra attention to the 
obtained information (Grunow & Farahani, 2012). 
Furthermore, it allows for modelling individual 
component instead of group components e.g. 
modelling of the individual product rather than product 
families. Additionally, different modelling options such 
as back-ordering or replenishment can be considered 
in finer granular models. On the other hand, finer 
granularity will increase the complexity of the problem 
and will raise costs of information analysis. 
Consequently, it yields increment of a number of 
elements (subsystems, components, parts), 
transactions, variables, constraints, etc. (Karlsen, 
2011). Thus, an appropriate decomposition of the 
system or definition of granularity will lead to a problem 
with a manageable size to solve. It is especially 
problematic in solving production planning and logistic 
problems since they are categorised as NP-hard 
complex systems where complexity grows 
exponentially very quickly (ElMaraghy, ElMaraghy, 
Tomiyama, & Monostori, 2012). 

In this paper, the term granularity is used to 
describe the size, quantity, level and detail of the 
system elements. Thus, granularity in CSN problems is 
dependent on some measures such as the number of 
product families, facilities, and time periods (Arthur F. 
Veinott, 2005). These parameters highly influence on 
the running time and substantially the efficiency of the 
in-use algorithm. Based on this features, Mousavi, 
Bahreininejad, Musa, and Yusof (2014) propose a 
three-level problem size known as Small-scale, 
Medium-scale, and Large-scale problems which are 
shown in TABLE I. (e.g. a model with 𝑃 = 7, 𝑀𝑃 = 6,
𝑅𝐸 = 11  and 𝑇 = 2  is regarded as a Medium-scale 
problem and so forth). 

TABLE I.  SIZES OF THE PROPOSED INSTANCES (MOUSAVI ET AL., 
2014) 

Problem Size Product  

Family (𝑷) 

Manufacturing 

Plants (𝑴𝑷) 

Retailer 

(𝑹𝑬) 

Periods  

(𝑻) 

Small scale [1-5] [1-5] [5-10] [1-3] 

Medium scale [6-10] [1-10] [11-20] [1-5] 

Large scale [11-15] [11-15] [20-30] [6-10] 
 

However, there are other parameters associated 
with real CSN problem, which add more complexity to 
the optimisation problem e.g. geographical locations of 
facilities, transportation modes, etc.  To this end, 

several OR articles (45 papers) for the last 16 years 
(since 1999 until present) are reviewed. The outcome 
of this review will contribute to the selection of a 
methodology, which would suit most to solve an 
optimisation problem concerning the size and the level 
of granularity. 

In the remainder of the present paper, the current 
modelling and analysis of CSNP problems are 
reviewed to identify the gaps in the knowledge in the 
planning of the CSN problems. 

D. Modelling Methods  

According to Ahumada and Villalobos (2009), 
CSNP modelling methods are grouped into two broad 
categories: deterministic and stochastic modelling.  

Deterministic modelling is composed of 
mathematical and optimisation modellings, and 
stochastic modelling consists of stochastic 
programming, stochastic dynamic programming, 
simulation modelling, and risk programming. The 
analytical properties of a given problem are taken into 
account in deterministic and heuristic approaches aim 
at obtaining a global or approximately global solution, 
but heuristic approaches are more flexible and efficient 
than deterministic approaches (Lin, Tsai, & Yu, 2012). 
However, the main downside of deterministic 
approaches is that they are effective to apply to large-
scale optimisation problems. Hence, in order to tackle 
the CSNP problem, the deterministic approaches are 
not reliable as they involve significant overhead 
computational time. Therefore, heuristic approaches 
are used to overcome this drawback. However, 
obtaining a feasible or globally optimal solution is not 
guaranteed through utilising the heuristic methods. 
Therefore, integration of both approaches 
(deterministic and heuristics) could result in a better 
approach to finding the global optimal or near optimal 
solutions. 

 Compared with a single deployment of 
deterministic or optimisation approaches, there is a 
broad range of CSN models using combined 
methodologies (Fig. 1). 

 
Fig. 1. Deterministic modelling approaches 

In the following sections, this classification will be 
further refined according to the fundamental 
mathematical methods and the level of granularity 
considered to solve CSNP problems. 
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III. ANALYTICAL MODELLINGS 

CSNP problems are analysed utilising a variety of 
methodologies that belongs to three groups of  
classical, optimisation or simulation approaches (Fig.1) 
traditionally separately or recently in an integrated 
framework i.e. hybrid methods (Lin et al., 2012). As it 
was mentioned earlier, the main objectives pursued in 
the modelling of CSNP is to improve the overall 
performance according to some pre-defined KPI’s (key 
performance indicator). Thus, the developed model 
can be investigated from different perspectives such 
as production and distribution planning, inventory 
control, organisational coordination, etc. (Hennies, 
Reggelin, Tolujew, & Piccut, 2014).  

The traditional CSN optimisation problems usually 
involve trade-offs between several objectives such as 
overall cost and inventory level minimisation, and 
customer service and total profit maximisation, aim at 
finding optimal/near optimal business solution (Yimer & 
Demirli, 2010). The following sections A-D reviews 
CSNP models in which the above modelling 
approaches have been deployed Fig. 2). 
Subsequently, the pros and cons associated with each 
model in the developed studies will be addressed. 

 
Fig. 2. Consumer supply network planning modelling methods 

A. Classical Approach 

Classical approaches compose of mathematical 
modelling techniques: (1) Linear Programming (LP), 
(2) Non-Linear Programming (NLP), (3) Mixed Integer 
Programming (MIP), (4) Non-Linear Mixed Integer 
Programming (NLMIP), (5) Lagrangian Relaxation 
(LR), and heuristic/metaheuristic approaches. A 
system can be analysed using these mathematical 
models with a set of constraints and can be optimised 
with specific heuristic/metaheuristic methods. 

Mathematical modelling techniques are beneficial 
due to the lower costs involved in solving large-scale 
problems. In addition, since they are fully matured, 
obtaining best or near optimal solutions are mostly 
guaranteed for a specific problem.  

LP approach is the simplest optimisation modelling 
where the objective function and conditions are linear. 
It has been mostly applied in location-allocation 
planning problems e.g. flexible cell manufacturing 
planning, supply network planning, and generally in 
economic planning phenomena. The following 

examples indicate the earliest time and some recent 
OR studies in which LP optimisation technique applied. 

Richard H. Day (1963) is a pioneer in LP modelling. 
He deploys LP models for decision-making production 
problem in the agriculture sector. Using the duality 
theorem, he shows the entire industry including 
several companies, can be modelled by two single LP 
models where the demand and supply equations are 
nonlinear. This is equivalent to a direct aggregation of 
a solution of a set of individual firm models in which 
total net revenue and total cost are maximised and 
minimised, respectively. However, the main 
disadvantage of this approach is a need for very 
restrictive assumptions about the aggregates in the LP 
models of production. Moreover, any changes in 
decision-making policy, for instance, from 
management leadership may lead to a considerable 
degree of proportional distortion at what level 
aggregates should be formed. 

Manne (1958) proposes a two-phase optimisation 
modelling for a single item inventory control problem 
under uncertain demand. In the first phase, decision 
rules developed using sequential probabilistic model 
and expressed by a Markov process. In the second 
phase; however, with LP method a solution alternative 
to the functional equation approach suggested 
minimising ordering and holding costs subject to some 
capacity constraints. Despite the efforts, he made to 
manage the complexity and size of the resulting 
problem; the proposed models are partially intractable.   

Although formulating of LP is popular due to its 
nicer mathematics, richer theory, simpler calculation, 
and often least difficult to define, it is not appropriate 
for CSN applications due to increasing level of 
complexity.  A major limitation of LP modelling is the 
linearity of optimisation function and constraints, which 
severely limits the type of problems that can be solved. 
Also, using LP modelling excessively complicates the 
model if linearization is used to approximate the 
function/constraints.  

Consider, for example, an inventory control 
problem with multi items and several production 
facilities with different capacity limits. Controlling 
inventory level associated with each item, especially 
with time-varying demand such that inventory costs 
remain at a minimum while capacity utilisation reaches 
its maximum level are very complicated. Finding the 
suitable solution (e.g. cyclic schedules) can be 
extremely hard due to the existing wide range of 
dynamic behaviours in CSN. Besides, they composed 
of considerably a large number of unknowns or 
constraints with different granularity levels making 
them more complicated and complex problem. 
However, using advanced computing technology, and 
through sophisticated mathematical programming 
codes such as NLP and MILP, might make it possible 
to define this class of problems that can be effectively 
solvable.  

NLP optimisation methods are mainly applicable for 
a category of problems that are too large and 
extremely complex to solve. They will be solvable if 
they define by particular characteristics. Similar to LP 
class, NLPs describe a system with some equalities 
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and inequalities subject to a set of constraints to 
optimise objective functions. What differentiates NLPs 
from LPs is either some of the conditions are 
nonlinear, or the objective function is nonlinear. Hence, 
the focus of NLP is on the complexity of the algorithm 
to design and analyse (Hochbaum, 2007).  

Several methodologies can be developed based on 
the characteristics of constraints and objective 
functions of the problem. For problems with nonlinear 
objective function, iterative search algorithms with a 
convergence rate proof is a leading methodology. 
However, it may require being restricted appropriately 
or replaced by a piecewise linear function that may 
adversely affect the complexity involved in the 
algorithm. To this end, it may need using some integer 
variables (Hochbaum, 2007). The difficulties raised in 
NLP will be addressed in MILP methodologies where 
the objective functions and sets of constraints are 
linear. 

During investigating the literature within the context 
of CSN, it has been noted the advantages of 
mathematical techniques and heuristic and 
metaheuristic methods are taking into account 
simultaneously. Thus, in Section B articles that have 
used the combined techniques are reviewed. 

B. Optimisation Approach (Heuristic and 
Metaheuristic Techniques) 

First efforts dealing with CSN optimisation using 
heuristic or meta-heuristic techniques have been 
initiated in the late 18s in supply/demand networks 
(Ibrahimov, Mohais, & Michalewicz, 2009). Since many 
aspects of industrial and commercial processes are 
subject to optimisation; it has been rapidly developed 
and addressed in the majority of research studies 
covering different decision-making levels. The 
evolutionary techniques exploited for solving such 
complex problems ranges from GAs, simulated 
annealing (SA), Monte Carlo, to neural networks 
(NNs), and fuzzy logic (FL). These algorithms are 
population-based which can solve the multi-objectives 
problem (Coello, Lamont, & Veldhuizen, 2007).  

As in any optimisation problems, input/output 
parameters, objective functions, and constraints are 
principle components that examine solution 
candidates. However, what has to be carefully 
considered is the size of the understudied problem. 
The larger is the size of the problem; a higher 
uncertainty level is expected; therefore, evaluation of 
conceptual models will be more expensive and may 
not guarantee to obtain a feasible or globally optimal 
solution (Yang, Koziel, & Leifsson, 2014). To this end, 
integration of deterministic and heuristic modelling may 
be a better applicable method (Lin et al., 2012). 

1) Linear Programming 
Vidal and Goetschalckx (2001) presented an 

optimisation-based LP model for global tactical CSN 
subject to uncertain demand. Their formulation 
includes distribution costs and transportation mode 
allocation as decision variables and a linear objective 
function for maximising the after-tax profits of a 
transfer-pricing problem shown in Fig. 3. They report 
the satisfactory computational results for small, 

medium and large-scale problems. However, regarding 
the granularity, the author does not consider supply 
and capacity constraints as well as associated costs to 
SN facility setup cost.  

 
Fig. 3. The basic single-product case with two subsidiaries (Vidal & 

Goetschalckx, 2001) 

Chan, Chung, and Wadhwa (2005) LP optimisation 
approach begins with utilisation of a hybrid GA for a 
single echelon single product CSN problem. They 
develop a linear programming model addressing 
demands allocation to manufacturers. Then total cost, 
fulfilment lead time, and equity of the utilisation ratios 
are optimised subject to linear and known constraints 
such as supply, demand, and capacity. One limitation 
of this model is that it assumes the products directly 
ship to the customers. Therefore, it does not reflect the 
complexity of the real CSN problem where some other 
transportation facilities are involved in the fulfilment of 
demands. Another shortcoming of this model is 
ignoring the resource constraints, although these are 
significant in real world SN. 

2) Mixed-Integer Linear Programming 
Amaroa and Barbosa-Póvoa (2009) introduce a 

MILP model for a multi-product multi-period 
pharmaceutical CLSC (Closed Loop Supply Chain), 
subject to uncertain demand and budget. They 
develop several scenarios and evaluate them using 
the branch and bound (B&B) optimisation procedure 
for a three months planning period. Although many 
efforts have been made to assess operational, 
economic, and market aspects by thoroughly 
formulating the problem, their approach is yet to be 
improved by considering larger planning horizon under 
violated price condition. This way, the B&B method 
may not be applicable as it does not necessarily 
provide information about the near-optimal solution, 
still very time-consuming algorithm which is limited to 
approximately 20 taxa (groups of taxons in an 
evolutionary tree i.e. a population), or less (Doyon & 
Chauve, 2011). 

Zamarripa, Silvente, and Espuña (2012) develop a 
two-stage stochastic MILP model to solve a multi-
echelon CSN. The model concerns multiple constraints 
associated with demand, resources, and capacity 
during decision-making procedure. The main objective 
of this model is to minimise the total cost of CSN 
covering production, inventory, distribution, and 
backordering costs for the period of three months. 
However, some characteristics of a complex CSN such 
as transportation of multi-products from multi-plants to 
multi-end-users are considered neither in their model 
nor the provided case study.  

More recently Xiao, Cai, and Zhang (2012) study a 
multivariable production model of three-echelon supply 
driven chain under the uncertain quality environment 
(Fig. 4). They develop a suitable supply coordination 
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mechanism based on a fuzzy set. Then they provide a 
numerical example where the stability of the analytical 
production control model is analysed and formulated. 
However, several simplifying assumptions reduce its 
applicability in practice. It is simulated for a three 
echelon CSN with three suppliers and one distribution 
centre for a single product over a period of 120 weeks. 

 
Fig. 4. An analytical production model of supply-driven chain (Xiao 

et al., 2012) 

Waldemarsson, Lidestam, and Rudberg (2013) 
propose a multi-site, multi-period MILP production-
distribution problem in Forestry industry (Fig. 5). Over 
a planning horizon of one year (time granularity of one 
month), the problem aims to maximise the total supply 
chain profit. The profit function is considered through 
entire SN from procurement and production to 
transportation of pulp products and the use of energy 
in pulp industry. The mathematical model was 
formulated using CPLEX approach via AMPL 
programming language. They analyse seven scenarios 
with five pulp mills capable of producing 15 products at 
each site. Even though there was a hard effort to 
develop such mathematical model but it was restricted 
only to the represented scenario not being a general 
model.  

 
Fig. 5. Illustration of the supply chain for Sodra Cell 

(Waldemarsson et al., 
2013) 

In a more recent study on design and optimisation 
of CLSC, Jindal and Sangwan (2014) present a fuzzy 
MILP model for multi-mode production facilities 
considering violating demand condition (Fig. 6).  Profit 
maximisation is the main objective function of this 
model. It is addressed through maximising the total 
number of parts supplied by the external supplier while 
maintaining the throughput of the network at maximum 
level. Their proposed model is applicable for the single 
period. This constitutes a shortcoming of this model 
since CSNP models mostly cover multi-period times in 
particular for controlling the inventory as the heart of 
CSNs. 

 
Fig. 6.  CLSC framework proposed by Jindal and Sangwan (2014) 

Pan and Nagi (2013) formulate a multi-echelon SN 
in an agile manufacturing (Fig. 7), aimed to minimise 
the total operational costs using Lagrangian relaxation 
heuristic. The main objective of their proposed model 
is to select companies in each layer to form the CSN. 
They have shown 10% improvement comparing to 
managerial initiative alternatives. Even though the high 
quantity of orders was considered in their model, but 
their mathematical model lacked in considering back 
ordering costs. 

 
Fig. 7.  Four echelon network (Pan & Nagi, 2013) 

3) Mixed-Integer Nonlinear Programming 
As the size of the problem grows, and the 

granularity level expands, the challenges in describing 
physical properties of CSNP problems and 
substantially the optimisation model increase.  For 
example, consider situations in which both linear and 
nonlinear uncertainties are involved (see portfolio 
optimisation (Huanga, Chen, & Fan, 2010), production 
planning optimisation (Ibrahimov et al., 2009), 
distribution systems, CSN optimisation). Thus, the 
objective function of the problem is described by 
nonlinear functions, and some of the problem's 
constraints are taken integer values. This class of 
mathematical programming is known as MINLP via 
which more realistic model of a real-world CSN 
problem can be described. 

In the MINLP model for an integrated CSN 
developed by Pitty, Li, Adhitya, Srinivasan, and Karimi 
(2008), various activities such as procurement 
planning, scheduling, and operation management were 
considered to optimise the total profit. This model 
mainly investigates the integrated modelling of CSN 
dynamics which will be referred and discussed further 
later in section C.   

Shabani and Sowlati (Shabani & Sowlati, 2013) 
look into a renewable energy SN (Forest biomass). 
They present a dynamic multi-objective optimisation 
model to maximise the overall value of forest biomass 
(profit) and to minimise the total costs of the network. 
Thus, the amount of biomass to buy, store and 
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consume in each month over a planning horizon of one 
year is estimated. In this model, nonlinearities deal 
with the monthly produced amount of electricity, and 
monthly average available energy in biomass storage. 
This model is one of a kind comprehensive and most 
granular CSN model that is generalizable for different 
planning horizon. However, Shabani and Sowlati only 
apply and validate their proposed model for a few 
number of scenarios with short-term planning horizons. 

Rezaeian, Shokoufi, Haghayegh, and Mahdavi 
(2016) formulate a two-echelon CSN of perishable 
products over multi-period planning horizon with 
MINLP mathematical technique subject to uncertain 
demands, limited space in the distribution centre and 
the available vehicle in the logistic fleet. In their 
developed hybrid, methodology GA and SA meta-
heuristics are utilised to minimise the entire cost of the 
network integrated with the inventory system. They 
also examine their model for small, medium and a 
large-scale problem where the number of product 
lines, factories, micro and macro periods (day/week), 
vehicles, and distribution centres vary between 1-10. 
The granularity level of this model compared to what 
has proposed by (Mousavi et al., 2014) is less fine. 
Additionally, they apply optimisation and simulation 
methodologies independently. 

More information on application of MINLP within the 
context of CSN is available in (Akgul, Mac Dowell, 
Papageorgiou, & Shah, 2014; Amin & Zhang, 2012; K. 
Chen & Ji, 2004; Eren & Turan; Zamarripa et al., 2015) 

4) Lagrangian Relaxation 
Often the optimisation problem is an NP-hard 

problem in which it may need to decompose the initial 
problem into some subproblems and examine each of 
them according to their sets of easy or very hard 
constraints (Grunow & Stefánsdóttir, 2015; Klau, 
2007). This technique is known as Lagrangian 
relaxation. The hard constraints are then removed by 
adding penalty function to the objective function i.e. the 
problem is relaxed.  

Mutha and Pokharel (2009) present a modular 
multi-echelon single-product reverse logistic (RL) 
model with various disposal and recycling rates for 
each component (Fig. 8). In their research, the main 
focus is on deciding the number of facilities with 
location and allocation of used products at an optimal 
cost subject to capacity constraints. However, they 
oversimplified their model from several perspectives: 
(1) applying the model to scenarios including only one 
item, (2) considering fixed waiting time for a returned 
product at all of the CSN facilities, and (3) separating 
the warehouse (inventory) location from the distribution 
centre. No evidence was shown whether or not their 
proposed model can be generalizable to the larger 
problem, let’s say with multi items. Overall, a medium 
level of granularity was considered in this study. 

 

 
Fig. 8. Reverse Logistic Proposed by Mutha and Pokharel (2009) 

Using RL method, Shi, Zhang, and Sha (2011) 
propose a mathematical model to examine a multi-
product CLSC network subject to uncertain demand 
and return. The problem is to maximise the 
manufacturer’s expected profit simultaneously through 
controlling the number of produced brand-new 
products and the quantities of remanufactured 
products. They evaluate the developed production plan 
for twenty case studies incorporating small and large-
scale problems where the number of products varies 
between 5-50 items. However, authors of this paper 
did not provide any information either about the impact 
of increasing the number of SN facilities or the 
planning horizon on the computational rate of the 
algorithm.  

Azadian, Murat, and Chinnam (2015) utilise 
Lagrangian Relaxation to formulate a production 
scheduling combined with logistic planning activities 
subject to predecessors and successors jobs 
undertaken in manufacturing scheduling. The objective 
function in their model is to reduce the total cost 
incurred in the production scheduling. However, they 
consider a very mild granular level of uncertainty that 
can be extended to a more granular model where 
supply and demand uncertainties are accounted.    

There is a significant tendency in the deployment of 
the optimisation techniques combined with 
mathematical models to solve complex and dynamic 
CSN problems. Their main advantage is that validating 
the solution can be verified mathematically, based on a 
given objective function and a set of defined 
constraints which yields the stable optimal solution, but 
not the gradient of design space over time (Hennies et 
al., 2014). Hence, broadening the scope of the 
problem would significantly result in higher complexity 
and exponentially grown computational intensity which 
make them inefficient and less practical approach 
(Alive, Fazlohhahi, Guirimov, & Aliev, 2007). Thus, this 
class of methodologies alone are not efficient to 
provide firms with valuable insights into their 
assumptions and feasible solutions. Certainly, it is 
essential for them to utilise other methods through 
which the real aspect of SN related problems can be 
examined. In particular, when implementation of a 
policy is too risky, expensive, or sometimes impossible 
in real CSN problem. 

The following section review OR papers that 
investigate the application of simulation modelling in 
conjunction with optimisation modelling in their case 
studies. 
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C. Simulation Approach 

Simulation modelling approaches are unique 
methods that are tightly integrated with mathematical 
and algorithmic-based models. They can explore 
different what-if scenarios that yield in a better 
understanding of the system and subsequently 
improvement of the system’s performance subject to 
various conditions and at any desired granular level. 

Simulation modellings are highly demanded among 
enterprises specifically in logistic and supply chain 
management (LSCM). They can link the gap between 
brilliant ideas and business initiative. Usually, 
processes in association with particular business units 
(e.g. manufacturing plants, SNs, call centres, and 
inventory control systems) can be described with a 
simulation model; within a controlled environment 
(Mekenton, 1987). Truly, the simulation is a descriptive 
tool in modelling and analysis of complex system such 
as SN systems. It is capable of exploring the holistic 
view of mutual data communication exchanged 
between different echelons of SN (Mustafee, 
Katsaliaki, & Taylor, 2014).  

The main objective of a simulation model is to 
mimic behaviours of a real system subject to 
substantial environmental changes using computer 
programming. Therefore, the exploration of many 
values per input and various combinations of these 
values is possible through simulation models (Dellino, 
Kleijnen, & Meloni, 2010). Using simulation modelling, 
one can reconfigure, experiment, and evaluate the 
resilience and robustness operation of a real system 
that is too dangerous, expensive, or impractical to 
implement. Additionally, their flexibility in developing 
different scenarios, reasonable high speed in 
examining the developed alternatives, and embedded 
standard reporting system make it distinctive in 
modelling, analysing, and validating of complex 
systems. Hence, the conceptual simulation model 
must be an accurate representation of the system 
under study to provide correct results (Carvalho, 
Barroso, machado, Azevedo, & Cruz-Machado, 2012).  

The simulation model will provide the modeller with 
answers to questions such as Subject to what sets of 
conditions, the system will perform better? Which set 
of configurations will optimise the performance 
measure? Changing of which factor will dramatically 
disturb the performance of the system? etc. However, 
overcomplicating a simulation model could cause 
issues such as input/output transfer, model 
composition, and slow execution speed.  

According to Campuzano and Mula (2011), SN 
simulation modelling will mainly concentrate on  

 Understanding the SN processes and its key 
problems 

 Developing a broad range of what-if scenarios 
and validating improvements 

 Examining various decision-based alternatives 
without interrupting the real SN 

 Quantifying benefits (e.g. demand forecasting, 
aggregated planning, etc.) 

Different types of simulation modelling can be put 
into practice based on the characteristics of the 
problem under consideration including spreadsheet 
modelling, system dynamics (SD), business games, 
and discrete events dynamic (Almeder, Preusser, & 
Hartl, 2009). The Spreadsheet-based modelling as a 
simulation platform was introduced to company's 
directors back in 1997 (R). Also, using business 
games simulation, e.g. Beer Game (Sterman, 1989), 
the dynamics of SN, for instance, bullwhip effect in 
Beer Game can be investigated.  

While the first tool is too simple to assess the real 
CSN problems accurately; the latter is more suitable to 
be used for educational purposes. However, discrete-
event simulation (DES) was found to be the most 
appropriate simulation technique utilised in CSN.  

DES is an event driven simulation tool which 
controls the system state changes upon an occurrence 
of an event. It can perfectly handle complex and 
dynamic problems that are significantly influenced by 
stochastic constraints (Schlegel et al., 2006). DES can 
assist system analysts to estimate the system’s 
performance by capturing its characteristics, 
reproducing and examining different decision-making 
alternatives, and selecting the most feasible scenario 
(Terzi & Cavalieri, 2004). To this end, it is the most 
powerful tool associated with SN problems through 
which supply and demand risk analysis can be 
conducted using SC performance measures (Reiner, 
2005).  

There is a broad spectrum of DES software 
packages that are commercially available and facilitate 
the modeller with animations of the materials flows 
through the entire systems or dynamic processes. 
Examples include SIMPROCESS (Chatfield, Harrison, 
& Hayya, 2006; DeFee, 2004; Swegles, 1997) , 
AUTOMOD, ARENA (previously SIMAN) (Carvalho et 
al., 2012; Mertins, Rabe, & Jäkel, 2005; Noche & 
Elhasia, 2013; Persson & Araldi, 2009; Terzi & 
Cavalieri, 2004; Zhang, Puterman, Nelson, & Atkins, 
2012), and MATLAB (for example, see (Abu-Ajamieh, 
Luong, & Marian, 2013; Fahimnia, Luong, & Marian, 
2009; Li & Chen, 2013; MARIAN, 2003)) .  

SIMPROCESS is a hierarchical modelling tool that 
combines process mapping, DES, and activity based 
costing; facilitating a user-friendly interface. 
AUTOMOD (Automotive Model-Based Development), 
and ARENA (developed by Rockwell Automation) are 
well-designed for DES providing the user with three 
main modules of Input, Output, and Process Analyser 
(Cimino, Longo, & Mirabelli, 2010) ("Applied AutoMod," 
2010). Although these software packages are very 
powerful modelling tools, they consume a relatively 
large amount of time to generate large sample 
datasets. MATLAB

®
 on the other hand, with the 

extended SimEvents
®
 toolbox, and graphical modelling 

environment, provides the user with both optimisation 
and simulation Toolboxes. For example, Fig. 9 
demonstrates a Kanban production system simulation 
model containing two types of withdrawal and work-in-
progress Kanban with an assembly line developed in 
SimEvents and Simulink

®
. Two production lines 

manufacture two parts A and B which are assembled 
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on an assembly line and produce the final product. In 
his simulation model, withdrawal Kanban is concerned 
with inventory management and work-in-progress 
Kanban is associated with production management. 
Therefore, to manage production activities and 
highlight the issues impacting on the performance of 
the system, DES modelling is beneficial to improve the 
system performance. 

 

Fig. 9. Kanban production system- A discrete event simulation 
modelling (MATLAB

(R)
&SIMULINK

(R)
, 2015) 

So far, it was showed that CSNP problems are 
addressed either using optimisation or simulation or 
both modelling techniques. Utilising each single 
approach in a separate framework might have some 
benefits; however, independent deployment of them 
has some drawbacks too. In particular, although 
simulation models can evaluate different configurations 
of solution alternative, they cannot take into account a 
combination of configurations. They can only work with 
one set of configuration. Still, finding the optimal 
solution through independently using the traditional 
methodologies will not be an easy task since it 
includes heavy computing overhead. Furthermore, it 
was noted that those models that have utilised 
optimisation and simulation methods separately were 
less realistic models as they did not realistically 
represent the large-scale, stochastics and complex 
and dynamic CSN model. Therefore, integration of 
both approaches seems to be more efficient to a 
higher level.  

The remainder of this paper reviews academic 
articles that deploy both simulation and optimisation 
methods as core components of their methodology in 
CSN problems.  

D. Simulation Optimisation Approach  

Simulation optimisation is the main component of 
the modern design across industries and engineering 
(Yang et al., 2014). Through the integrated structure 
approach, optimal settings for input parameters 
associated with a simulation model can be determined 
(Huerta-Barrientos, Elizondo-Cortés, & Mota, 2014). 
However, it embeds high computational requirements 
too (Jung et al. 2004; Wan et al. 2005).  

Since 1972, many exciting works in simulation 
optimisation have been explored by researchers and 
practitioners, to enhance the performance measures in 
a controlled environment (Almeder et al., 2009; Y. 
Chen, Mockus, Orcun, & Reklaitis, 2010; Y. Chen et 
al., 2012; Dellino et al., 2010; Ding, Benyoucef, Xie, 
Hans, & Schumacher, 2004; Fu, 1994; Huerta-
Barrientos et al., 2014; Jacoby, 1972; Jeong Hee 

Hong, Seo, & Kim, 2013; Jung, Blaua, Pekny, 
Reklaitis, & Eversdykb, 2004; Mekenton, 1987; 
Nelson, 2010; Schlegel et al., 2006; Wan, Pekny, & 
Reklaitis, 2005; Yang et al., 2014; Zhang et al., 2012). 
However, yet a small group of researchers has 
contributed to the development of its applications 
across the globe. Huerta-Barrientos et al. (2014) 
reported 355 authors across 35 countries.  

CSNs are most commonly simulated by DSE and 
SD approaches. While strategic decision making is 
simulated via SD, decisions at tactical or operational 
levels are modelled with DES Zelenka (2010).  

Michael Fu (1994), in a review on optimisation 
techniques via discrete-event simulation, defines DE 
system as "a system of differential equations with 
randomness feature in the model that a "physical" 
state of the system experiences "jump" at discrete 
points in time upon the occurrences of events". Let us 
consider inventory control problem of the DSN, a 
perfect example of DE system (Fig. 10); state variables 
are a number of orders in the queue and the available 
inventory level (𝑥𝑖) that vary at a particular instant of 
time (𝑡𝑖). The values of these parameters change only 
when an order (entity –𝑒𝑖) arrives or when it is received 
and departs. Thus, any changes in system’s states can 
simply be implemented through computer-based 
modelling programs. In general, system entities, input 
parameters, performance measures, and mathematical 
equations/inequities are the fundamentals of 
simulation models.  

  
Fig. 10. Discrete Event Simulation block diagram  (Cassandras) 

Lee, Kim, and Moon (2002) demonstrate a hybrid of 
simulation and optimisation model for production-
distribution network subject to capacity constraint. The 
objective function in their model is to minimise the 
overall cost of the entire network. The simulation 
model is the core component of this approach. It is 
developed to check and update the initial capacity 
assumptions used for a simpler linear optimisation 
model. Then they evaluate the developed model 
through a numerical example consists of two shops 
each with one product, two distribution centres, and 
three retailers over three weeks planning periods. The 
size of the case study is relatively small. Hence, the 
complexity level regarded in this paper is very low 
which make it unsalable/inapplicable to the real CSN.  

Jung et al. (2004) propose a S-P model using SOA 
method shown in Fig. 11. In their developed case 
study two production plants (A, B) with five different 
process activities subject to supply and demand 
constraints are considered. They construct the DES 
model using CSIM18 & CPLEX for an operational 
planning level to determine the associated quantity 
with the manufacturing and supplying an individual 
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product. Also, the objective function of their 
optimisation model incorporates production, resource 
supply, and shortage penalty costs which are 
formulated using LP model, a gradient-based search 
approach, aims at minimisation of the safety stock 
levels of each product family. However, they have 
ignored the integration of the entire cost; instead, have 
considered the separated objective function in their 
optimisation model. Moreover, due to the extensive 
computing time experienced in running experiments, 
they could not have implemented the developed model 
for similar problems with finer granularity level. 

Schlegel et al. (2006) integrate optimisation into a 
CSN simulation model for an operational planning level 
of one month. They apply the proposed methodology 
to a CSN network with 𝑆 = 9 and 𝑀𝑃 = 4, enable of 
producing 80 types of products to improve the service 
level. The uncertainty in this model originates from 
demand and capacity of the intermediate buffer tanks. 
However, they have not provided any data or reported 
any numerical result in order to validate their 
approach. Besides, they have not disclosed any 
information about the optimisation algorithm or the 
simulation model.  

 
Fig. 11. Configuration of simulation and optimisation procedures 

(Jung et al., 2004)  

Ding, Benyoucef, and Xie (2009) design a CSN 
considering SN configuration and operational 
decisions to minimise the total cost. They utilise GA for 
the optimisation engine and a precise formal CSN 
design including all possible operation decisions and 
decision rules for the simulation module. The 
uncertainties incorporate with their model are mainly 
related to production and handling capacities. Also, 
they examine the effectiveness of their model for an 
automobile manufacturing case study for a small-scale 
problem; 𝑀𝑃 = 3, 𝐷𝐶 = 1, 𝑅𝐸 = 6  with one 
transporation mode and over planning period of one 
week. The simulation module runs each scenario once 
to evaluate the best CSN configuration with minimum 
cost. No numerical experience is presented in this 
paper due to confidentiality. But the main shortcoming 
of this model is the coarse granularity level regarded 
for the sources of uncertainty, mode of transportation, 
and the planning horizon.  

Nikolopoulou and Ierapetritou (2012) present a 
CSN model subject to uncertain demands and limited 
capacity for tactical planning horizon. They propose an 
SOA algorithm consists of simulation and optimisation 
modules, both calculating the total cost of the network 
individually. The SOA runs the MILP model and 
evaluates the fitness function (total cost) 
independently. In a recursive mode, then the produced 
solution by the optimisation module is compared with 

the solution obtained from the simulation module. The 
comparison procedure continues until the difference 
between two solutions exceeds a constant threshold. 
Finally, this paper reports some numerical data derived 
from applying the SOA method on a small-scale SC 
problem. Even though both simulation and optimisation 
cores included in this approach, but there is no 
dependency or interaction between them. As the 
simulation model is used to produce initial value for the 
mathematical model parameters. Also, no evidence is 
showed in regards to the possibility to generalise this 
model for a similar problem with larger scale. 
Additionally, it is not clear if solutions with better quality 
rather than what have achieved could have been 
obtained by choosing a different configuration of 
parameters.   

Zelenka (2010) develops a simulation optimisation 
model for a recycling plastic job-shop manufacturing 
firm using a DES-based approach. By generating two 
scenarios,  with SimEvents

®
 and Simulink

®
 toolboxes 

of MATLAB, Zelenka presents individual processing 
mode of two specific product families (film roll) that 
each produces a 𝑥  number of fill roll. Then, the 
simulated scenarios are used to minimise the 
downtime (the difference between the 1

st
 and the 2

nd 

production time) on scroll line. However, they highlight 
they have disregarded some major conditions in job 
scheduling such as production time, downtime, 
resources and budget. This limits the efficiency and 
practical value of this model. Additionally, the small 
number of jobs and types of products are obvious 
signs of over simplification in the developed case study 
by Zelenka. 

Zhang et al. (2012) design an integrated 
demographic simulation and optimisation OR decision 
support system reporting a Canadian heath 
organisation to examine long-term care capacity 
planning. Subject to service level criterion, two 
separate case studies embedding several scenarios 
are investigated to find the required capacity per 
annum. Based on this approach, they propose a look-
up table containing different series of policies, with 
upper and lower bound of capacity level reportable to 
managers.  Multiclass queuing system (M/M/s) with 
variable arrival and service time rates are considered 
to simulate the health system. The main objective of 
their model is to optimise the capacity of the required 
staff to reduce the admitted clients (patients) waiting 
time subject to satisfying some medical eligibility 
requirements.  

Their developed approach uses two different 
search algorithms for the optimisation phase namely 
sequential and simultaneous algorithms. Even though 
the obtained results from the concurrent algorithm 
(gradient-based optimisation) shows approximately 
30% improvements, computationally it is very complex 
and expensive. Although they provide a clear 
convergence criterion (average, satisfactory level), the 
local optimum solution (service performance with 
predetermined capacity) seems not too efficient for 
capacity planning. Because it does not propose a 
series of policy for capacity planning but a series of the 
capacity level.  
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A batch pharmaceutical CSN (Fig. 12) SO platform 
build by Y. Chen et al. (2012). They aim to minimise 
the clinical trial costs including production cost, holding 
cost, wasted product cost and penalty cost for 
unsatisfied demand. Through simulation model, 
different demand scenarios are generated and 
stochastically predicted to identify the number of drug 
packages at clinical sites. Then, they consider 
probabilities and resource constraints of a specific 
demand scenario as two main parameters required in 
the execution of the transportation plan. After which 
manufacturing operations and distribution planning of 
the entire SC are examined. Similar to the previous 
experimental design in this study, computational time 
exponentially increases if the total number of stock 
keeping units in the production plan rises.  

 
Fig. 12. Clinical trial supply chain management computational 

framework (Y. Chen et al., 2012) 

Hubscher-Younger, Mosterman, DeLand, Orqueda, 
and Eastman (2012) formulate a model predictive 
control algorithm comprised of both discrete-event and 
continuous computation models for a chemical batch 
manufacturing process. The order systems, production 
system, and process analysis are the main 
components of SN model. They are simulated using 
SimEvents

®
 Toolbox of MATLAB. Then through Global 

Optimisation Toolbox
®
 the backlog of orders is 

minimised while considering a suitable combination of 
equipment to be bought at minimum cost in the plant. 
To overcome the computational cost issue, they 
deploy the Parallel Computing Toolbox

TM
 within the 

same domain. It is distinguished that the integrated 
architecture is effectively and efficiently demonstrated 
in MATLAB

®
 without switching into multiple software 

environments. However, the scale of the problem 
described in this paper was found to be small, and the 
objective function and constraints components are 
linear. It has the potential to be expanded to a real 
CSN problem with the higher level of complexity 
including all cost components and nonlinearity in the 
set of constraints. The most interesting part of this 
model is the time parameter which is entirely 
controllable through the simulation model. Thus, it 
addresses the planning period granularity 
comprehensively. However, other assumptions to the 
production model should be adjustable accordingly.  

Mousavi et al. (2014) develop a modified PSO 
optimisation model (MPSO) for a location-allocation 
CSN problem. They formulate two-echelon distribution 
network with multi-product multi-period inventory under 
uncertain seasonal demands. The primary objective of 
this research is to determine firstly the quantity of the 
orders and secondly the location of the vendor. Also, 
Mousavi et al. use Taguchi method to tune the 
parameters of MPSO search mechanism. They 

significantly have considered all aspect of parameter 
tuning in their model and have conducted a sensitivity 
analysis for similar problems with different granularity 
level.  

Seifbarghy, Kalani, and Hemmati (2016) in a similar 
study develop a discrete PSO algorithm seeking the 
maximum channel profit of a two-echelon single 
product CSN. They consider sales quantity and 
production rate as decision variables of their model. 
Through utilisation of several stochastic and 
metaheuristic search algorithms such as PSO, GA, 
and simulated annealing (SA), they conduct a rich 
sensitivity analysis. However, the improvement of the 
proposed heuristic obtained by developing another 
heuristic which computationally seems very expensive 
method. 

Roba W. Salem and Mohamed Haouari (2016) 
model a three-echelon SN considering uncertain 
demand to minimise the total expected cost. Using 
MILP method, they formulate the model and deploy 
PSO algorithm to find the near optimum solution. Also, 
they conduct the simulation part using the Monte Carlo 
simulation routine. Three case studies with different 
supply uncertainty levels are presented to indicate the 
higher impact of the supply uncertainty in comparison 
with the demand uncertainty on the expected cost.  
This research is an exemplary of SOA approach; 
however, the developed case studies are tested 
against the coarse granularity level (single product-
single facility) in which the information about lead time 
and supply costs are disregarded. 

IV. A SYNOPSIS OF RESEARCH IN CSNP PROBLEMS 

 TABLE IV.  summarise the results of the 
investigation across the literature over a total number 
of 45 papers in the area of CSNP since 1999 (Fig.15). 
These OR articles have been reviewed according to 
the criteria listed in TABLE II.  

TABLE II.  CSNP - CLASSIFICATION CRITERIA  

Planning 
Scope 

Network 
Structure 

Decision 
Variables 

Sources of 
Uncertainty 

Objective 
Function 

Granularity 
Level 

Modelling 
Approach 

Operational Single 
Echelon 

Supplier Supply Total Cost 
(min) 

Coarse Determinist 

Tactical Multi-
Echelon 

Production Demand Total Profit 
max) 

Medium Stochastic 

Strategic  Inventory 
Control 

Resource Other Fine SOA 

  Distribution Capacity    

  Allocation Other    

  Other     

The majority of the models across the literature 
were developed considering multi-echelon as the CSN 
structure (Fig. 14). Also, demand, supply, resource, 
and capacity were taken into account almost equally 
as the most significant sources of uncertainty (Fig. 15-
a). Besides, decisions regarding production, 
distribution and inventory management (PD-IC-DC) 
have received more attention from scientists (Fig. 15-
c) mainly for the operational planning horizon (Fig. 15-
b).  
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Fig. 13. The trend of CSNP problems across the literature 

 
Fig. 14. The CSNP structure used in the literature 

 
(a) Sources of constraints 

 

(b) Planning scope 

 
(c) Decision Variable 

Note: PD stands for Production network, and DC refers to the 
Distribution network 

 
(d) Objective function 

 

(e) Deterministic modelling methods 

 
(f) Stochastic modelling approach 

Fig. 15. CSNP Modelling Characteristics deployed in the literature 

As it is shown in Fig. 16 and Fig. 17, the majority of 
the models have considered a medium level of 
granularity (single product-multi facilities/ multi-
products/single facility/multi-product-multi-facility). In 
addition, the coarse level (single-product single facility) 
stands at the second place, while the fine granularity 
(multi-product multi-facility multi-period) has received 
minimum attention (approximately 9%). 

 
Fig. 16. The trend of CSNP granularity level across the literature 

Additionally, the trend of addressing planning 
horizon over the past two decades (1999-2016) in the 
case studies was toward more works on an operational 
decision-making level, while the tactical and strategic 
planning scopes were less investigated (Fig. 17 and 
Fig. 18).  

TABLE III. quantifies the level of granularity 
corresponding to each planning scope. For example, 
whereas around 45% of the developed case studies in 
operational, tactical and strategic planning horizons 
accommodate the medium level of granularity, 40% 
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take into account the course level of granularity and 
less than 15% consider the fine level of granularity. 

 
Fig. 17. CSN modelling approaches deployed in the literature 

TABLE III.  COUNT OF PUBLICATION ACCORDING TO GRANULARITY 

LEVEL AND PLANNING SCOPE 

Planning Scope Coarse Fine Medium NA 

Operational 34% 52% 7% 7% 
Tactical 40% 40% 20%  
Strategic 50% 50%   
Operational & Tactical   100%  
Tactical & Strategic  100%   
All  50%  50% 
NA 60% 40% 

   

 
Fig. 18. The trend of Planning Scope across the literature 

V. DISCUSSION ON EXISTING SIMULATION-
OPTIMISATION MODELS FOR CSNP PROBLEMS  

Through investigation of the present models and 
experimental studies in the literature, three distinct 
gaps of knowledge were distinguished as following: 

1- Low complexity of case studies used for 
simulation 

At this stage, all computational and mathematical 
approaches in the literature corresponded to relatively 
small-scale case studies in CSNP problems (Abu-
Ajamieh et al., 2013; Carvalho et al., 2012; Chan et al., 
2005; DeFee, 2004; Ibrahimov et al., 2009; Mertins et 
al., 2005; Noche & Elhasia, 2013; Schlegel et al., 
2006; Xiao et al., 2012). In other words, the level of 
details considered in the developed models, except in 
a few (Amaroa & Barbosa-Póvoa, 2009; Fahimnia et 
al., 2009; Pitty et al., 2008; Seifbarghy et al., 2016), or 
the decision-making processes was significantly 
embedded the low level of complexity. Apart from the 
challenges involved in large-scale problems, the 
computational rate has been tried to be reduced by 
over simplifying the numerical examples like in the 
paper presented by Pan and Nagi (2013).  

Approximately 50% of the problem were deployed 
considering small-scale CSN case studies to validate 

the efficiency of algorithms (Fig. 15-f). Often, the multi-
echelon structural network was selected for the 
development of CSN model (~ 71% see. Fig.16-a) in 
which 2-4 product families, 2-4 distribution centres 
(including warehouses) were included and mostly for 
operational planning horizon (~70% see. Fig.16-b). In 
more than 66% of the developed CSN models, two or 
more than two decision variables were considered 
(e.g. PD (Amaroa & Barbosa-Póvoa, 2009; Pierreval, 
Bruniaux, & Caux, 2007; Silvente, Zamarripa, & 
Espuña, 2012), PD-A (Ding et al., 2004), P-IQ-DC-A 
(Almeder et al., 2009; Fahimnia et al., 2009; Rezaeian 
et al., 2016; Roba W. Salem & Mohammed Haouari, 
2016), etc.). It was noticed that supply, demand, 
resource, and capacity sources of uncertainty were 
significantly addressed in the developed case studies 
(Fig. 15-c) to either minimising the total coat of the 
CSN or maximising the total profit (Fig. 15-f). However, 
in this research, a real and practical case scenario with 
more details (e.g. products families, transportation 
type, distribution centres, customer zones, etc.) will be 
utilised to overcome this shortcoming. 

2- Independent problem analysis in modelling and 
simulation 

In most of the reviewed papers, modelling, and 
simulation of formulated problems have been analysed 
independently (Fig. 19). This will decrease the validity 
and capability of the proposed methodologies, while an 
integrated modelling architecture can eliminate the 
complexities that are individually embedded in 
simulation and optimisation modules.   

Separate deployment of such approaches might be 
appropriate for development of the small-scale 
experimental, but it certainly limits the development of 
medium and large-scale scenarios. Therefore, it is 
required to utilise an integrated modelling architecture 
which can eliminate the complexities that are 
individually embedded in simulation and optimisation 
modules. 

 

Fig. 19. Methodologies across the literature 

A few number of studies were addressed the SOA 
in their CSN models; however, they were examined for 
small-scale problems (Amaroa & Barbosa-Póvoa, 
2009; Schlegel et al., 2006; Wang, Guana, Shao, & 
Ullah, 2014).   

3- Ignoring the granularity as a paramount factor 
in the quality of the achieved solution 

Also, it was noticeably observed that granularity- 
the smallest level of details- greatly ignored in the 
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modelling of the existing systems in the literature; 
either too narrow or too sparse level were considered.  

As TABLE III. summarises, nearly 50% of the 
researches were conducted based on the medium 
granularity level (single-product single-facility or multi-
products single facility), while 31% of them were 
examined for the short-term planning horizon. Hence, 
many decision variables have been entirely 
disregarded or underestimated in lower levels of 
planning. This is due to inconsistent operating of 
simulation and optimisation model. For instance, 
although the problem space has designed to function 
on a daily basis time bucket, optimisation model may 
implement for longer time bucket (weekly, or even 
monthly). Thus, the total cost in the specific problem 
will not be estimated accurately. Therefore, the 
obtained optimal or near optimal solution need to be 
reviewed. To this end, it is required to propose a new 
approach considering complexity and dynamism of the 
CSN to the finest granular extent with uncertain 
demands and using DES method addressing 
challenges involved in CSNP problems using meta-
heuristics optimisation technique, Genetic Algorithm to 
dominate the mentioned gaps in the knowledge.  

VI. CONCLUSION AND FUTURE WORK 

This study highlights the significance of CSNP 
problems and reviews different modelling approaches 
ranging from classical mathematical programming to 
hybrid and systematic modelling methods. Attention 
has been paid to classical, optimisation and simulation 
categories and their advantages, and limitations. In 
general, the main concerns with the existing modelling 
methods were demonstrated: (1) low level of 
complexity, (2) taking advantage of simulation and 
optimisation techniques separately, (3) disregarding 
the granularity factor in the problem. 

Due to the increasing level of complexity in real-
world CSNs and the advent of powerful computers, 
more sophisticated and efficient advanced planning 
models can be developed. Methods that integrate 
simulation and optimisation techniques (SOA) are 
relatively superior in addressing the aforementioned 
concerns. 

Despite the suitability of SOA, only a limited 
number of studies applied it. Therefore, further 
implementations of this method in the context of CSNP 
can potentially increase the quality of the proposed 
solutions in this domain. A real-world problem built 
upon SOA will be presented in our subsequent study. 
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