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Abstract— This paper presents the application of 
P, PI, PID, GA-PID and Auto-tuned PID controllers 
to control the vibration of the 1/4 car suspension 
system. An open loop response of the car 
suspension system is developed using equations 
of the 1/4 car suspension system, state space 
model and transfer function model built in 
Matlab/Simulink. The results of the open loop 
response reveal that the system is under-damped 
for a disturbance unit step input W. Also, the car 
takes unacceptably long time for it to reach the 
steady state, that is, about 50 seconds way 
beyond the design requirements of 5 seconds. 
However, full implementation of PID controller to 
the suspension system causes the design 
requirements to be met. Also, GA-PID controller is 
found to produce better results of suspension 
control than PID, and Auto-tuned PID controllers. 

Keywords—PID; GA-PID; Auto-tuned PID; 
State-Space; Transfer function; Matlab/Simulink; 

I.  INTRODUCTION  

           Suspension systems are the most important 
part of the vehicle affecting the ride comfort of 
passengers and road holding capacity of the car, 
which is crucial for the safety of the ride. Moreover, 
increasing progress in automobile industry demands 
that highly developed vehicle models with better riding 
capabilities to enhance passenger comfort be 
developed. The aim of the advanced vehicle 
suspension system is to provide smooth ride and 
maintain the control of the car over cracks and on 
uneven pavement of roads. Suspension system 
modeling has an important role for realistic control of 
vehicle suspension [1-3].  
           Designing a good suspension system with 
optimum vibration performance under different road 
conditions is an important task. Over the years, both 
passive and active suspension systems have been 
proposed to optimize the vehicle quality. Passive 
suspension uses conventional dampers to absorb 
vibration energy and do not require extra power [4]. 
Whereas active suspension systems capable of 
producing an improved ride quality use additional 
power to provide a response-dependent damper [5]. 

         Nowadays, different types of controllers are 
being used to control the car suspension system such 
as adaptive control, Linear Quadratic Gaussian (LQG) 
control, H-infinity, Proportional (P) controller, 
Proportional Integral (PI) controller, and Proportional 
Integral Derivative (PID) controller [6-8]. In this paper, 
the ¼ car suspension system is modeled using 
Simulink blocks. Also, P, PI, PID, Genetic-Algorithm 
(GA) PID and Automatic-tuned PID controllers are 
designed to control the vibration of the car suspension 
system using Matlab/Simulink. 

 

 

II. MODELING OF QUARTER CAR SUSPENSION 

           SYSTEM 

 

      The car suspension system is one of the 
impressive challenging problems in terms of 
controlling the system. When designing the car 
suspension system, a ¼ car model (one of the four 
wheels) is used to simplify the problem to a one 
dimensional spring-damper system [9]. The schematic 
representation of the quarter car suspension model is 
as pictured in figure (1). Table1 depicts the model 
parameters. Moreover, in developing the 
mathematical model of the quarter car, only the mass 
movements on the vertical axis is considered ignoring 
the rotational movement of the vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig.1.Quarter car Suspension Model 
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TABLE1. PARAMETERS FOR QUARTER CAR SUSPENSION 

MODEL 

Parameter 
Description 

   Parameter 
Symbol 

Parameter        
Value 

Parameter 
Unit 

1. Mass of  
sprung mass 

 

m1 

 

2500 

 

kg 

2. Mass of 
Un-sprung 
mass 

 

m2 

 

320 

 

Kg 

 

3. Stiffness 
coefficient of 
the 
suspension 

 

k1 

 

80,000 

 

N/m 

4. Vertical 
stiffness of 
the tire 

 

k2 

 

500,000 

 

N/m 

5. Damping 
coefficient of 
the 
suspension 

 

c1 

 

350 

 

Ns/m 

6. Damping 
coefficient of 
the tire 

 

c2 

 

15,020 

 

Ns/m 

7. Vertical 
displacement 
of the sprung 
mass 

 

x1 

 

- 
A.  

8. Vertical 
displacement 
of the 
unsprung 
mass 

 

x2 

 

- 
B.  

9. Controller 
output (force) 
which is to be 
controlled 

 

U 

 

- 
C.  

10. Road 
excitation 

 

W 

 

- 
D.  

 

A.     Design requirements 

      A good car suspension system should have 
satisfactory road holding ability, while still providing 
comfort when riding over bumps and holes in the 
road. When the car is experiencing any road 
disturbance (that is, pot holes, cracks, and uneven 
pavement), it is expected that the car body dissipates 
its oscillatory motion quickly. Now, since the distances 
x1-W is very difficult to measure, and the deformation 
of the tire (x2-W) is negligible, the distance x1-x2 
instead of x1-w is used as an estimated output to  

 
analyze the behavior of the suspension system. In this 
work, the road disturbance (W) will be simulated by a 
step input and this step could represent a car coming 
out of pothole [10]. A feedback controller has to be 
designed so that the output (x1-x2) has an overshoot 
less than 5% and settling time shorter than 5 seconds. 
For example, when the car runs onto a 0.1 m high 
step, the car body will oscillate within a range of ± 
0.005 m and return to a smooth ride within 5 seconds. 
 
 

III. MATHEMATICAL MODEL OF QUARTER CAR 

        SUSPENSION 

       To derive the dynamic governing equations of the 
¼ car suspension system, Newton’s second law is 
used for each of the two masses in motion and 
Newton’s third law for the interaction of the masses. 
The dynamic equations are as shown: 
 

 m1�̈�1 = −c1(�̇�1−�̇�2) −k1(x1−x2) + U                               (1)                                                                                       
 

 

m2�̈�2 = c1(�̇�1−�̇�2) +k1(x1−x2) + c2 (Ẇ − �̇�2) + 

k2(W−x2) –U                                                                   (2) 
 

 

where all the values of the constant parameters, m1, 
m2, k1, k2, c1and c2 in both equations are given in 
table1.  
 
Equations 1 and 2 are second order differential 
equations of the active suspension system of the car. 
Solving this system of equations poses a lot of 
difficulties, so therefore, the system is solved and 
verified using Matlab Simulink software based on the 
following approaches. 

 Building the  car suspension system 
equations in Matlab/simulink; 
 

 Using the ‘state-space’ model and 

 Using the ‘transfer function’ approach. 

 

 

A.   Modeling/Building the system equations using 
      Matlab Simulink blocks     

        Equations 1 and 2 are built together using Matlab 
Simulink blocks to represent an implementation of the 
car suspension system in simulink. This is shown in 
figure (2).   
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Fig.2. simulation model of uncontrolled ¼ Car suspension 
system 

 

 

In this paper, uneven pavement and cracks are 
considered as disturbances that create vibration in the 
vehicle. The aim of this work is to reduce the vibration 
in the car for the comfort of the passenger. When 
considering the control input U(s) only, set W(s) = 0. 
Thus, observe an Open-Loop response of the step 
actuated force. The sprung mass displacement is 
shown in figure (3), and the unsprung mass 
displacement is shown in figure (4). 
 

 

 

 

 

 

 

 

 
Fig.3. Open loop step response, body sprung mass 
displacement 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Open loop step response for suspension (unsprung) 
mass displacement 

 

B. Modeling of Car suspension system using Transfer 
Function Equation 
 
       The quarter car suspension system can be 
modeled using transfer function equation. Now, 
assume that all of the initial conditions are zero, so 
these equations represent the situation when the car’s 
wheel goes up a bump. The dynamic equations 1 and 
2 above can be expressed in the form of transfer 
functions by taking Laplace Transform of the 
equations. The derivation, from equations 1 and 2 of 
the transfer functions G1(s) and G2(s) of output, x1-
x2, and two inputs, U and W, are as follows: 
 

 

(m1s2 + c1s + k1) x1(s) − (c1s + k1) x2(s) = U(s) 

 

                                                                                          (3)                                             
 

 

 

(c1s + k1)x1(s) + (m2s2 + (c1 + c2)s + (k1 + k2))x2(s) 
= (c2s + k2)W(s) − U(s) 

                                                                                          (4)                 
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                                                                                           (6) 
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                                                                                           (7) 
 

 or      

 

∆= (m1s2 + c1s + k1) ∙ (m2s2 + (c1 + c2)s + (k1 + 

k2)) − (c1s + k1) ∙ (c1s + k1)                                
                                                                                          (8)                                                                                                       
 

 

 

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 3 Issue 3, March - 2017 

www.jmess.org 

JMESSP13420306 1509 

 
Find the inverse of matrix A and then multiply with 
inputs U(s) and W(s) on the right hand side as the 
following: 
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                                                                                      (10) 
 

 

When inputs U(s) only is considered, W(s) is set to 0. 
Thus the transfer function G1(s) is obtained as follows: 
 

G1(s) = 
𝑥1(𝑠)−𝑥2(𝑠)

𝑈(𝑠)
 = 

(𝑚1+𝑚2)𝑠2+𝑐2𝑠+𝑘2

∆
 

 

                                                                                      (11) 
 

 

When input W(s) only is considered, U(s) is set to 0. 
Thus the transfer function G2(s) is obtained as: 
 

G2(s) = 
𝑥1(𝑠)−𝑥2(𝑠)

𝑊(𝑠)
 = 

−𝑚1𝑐2𝑠3−𝑚1𝑘2+𝑠2

∆
 

 

                                                                                     (12) 
 

Now, using the parameters of the bus suspension 
system as given in table1 and the function tf2s, the 
transfer functions of G1(s) and G2(s) for a step input 
are obtained as follows: 
 
G1(s) = nump/denp = 

 
2820𝑠^2+15020𝑠+500000

800000𝑠^4+3.854𝑒007𝑠^3+1.481𝑒009𝑠^2+1.377𝑒009𝑠+4𝑒010
 

 

                                                                                      (13) 
 

 

 

 

 
G2(s) = num1/den1=  

−3.755𝑒007𝑠^3 − 1.25𝑒009𝑠^2

800000𝑠^4 + 3.854𝑒007𝑠^3 + 1.481𝑒009𝑠^2 + 1.377𝑒009 + 4𝑒010
 

 

                                                                                        (14) 
 
 

Now, the process transfer function represented by 
equation (13) can be simulated as an open-loop 
system (without any feedback control) to control input 
U. The  simulink model is shown in figure (2), and 
figure (5) below shows the open-loop response of the 
process transfer function, which is obtained by 
considering only the disturbance input W(s) = 0.1 m, 
and U(s) = 0. 
 

 

 

 

 

 

 

 

 

 

 

   Fig.5. Open loop response for process transfer function to 

  0.1 m disturbance input 

 

 

      As shown in figure (5), the system is under-
damped for a disturbance step input of W(s) = 0.1 m. 
Hence, people sitting in the car would feel very small 
amount of oscillations for a very long time, that is, 
about 50 seconds, which is way beyond the desired 
time of 5 seconds. This also applies to the open loop 
step response for the body sprung mass displacement 
shown in figure (3). The solution to this problem is to 
add a feedback controller into the system’s block 
diagram. 
 

 

C. Modeling of Car suspension system using the 

‘State Space’ approach   

         

       Another method of modeling suspension with 
matlab software is by using the general form of the 
state space approach [11]. Now, to transform the 
motion equations of the quarter-car model into a state-
space model, the equation (20), which includes 
variable vector, input vector and the disturbance 
vector, is formed after some algebraic operations. 
Thus, 
 

�̇� = Ax + BW               State equation               (15) 

 

y = Cx + DW               Output equation             (16) 

 

�̇� = [A][x] + [B]W                                          (17) 
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y =  0100  [

𝑥1

�̇�1

𝑦1

�̇�1

] +[0 0] [
W

U ]                                                

                                                                        (18) 
 

 

 

y =[C][x] + [D]W                                           (19) 
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Hence, the matrices of equations (20) and (18) are 
entered into the simulink state-space block as 
parameter A, B, C and D respectively as illustrated in 
figure (2), and simulated. Here, a disturbance input of 
0.1 m is used, where U(s) = 0 and W= 0.1 m. The 
result of the simulation is as shown in figure (6). 
                                                                         

 

 

 

 

 

 

 

 

 

 
Fig.6:  Process state-space response to 0.1 m disturbance 
input 

 

 

IV.       CONTROLLER 

          A controller is a comparative device which may 
be in a form of circuit, chip or computer that receives 
an input signal from a measured process variable, 
compares this value with that of a predetermined 
control value (set point), and determines the 
appropriate amount of output signal required by the 
final control element to provide corrective action within 

a control loop [12]. Currently, the usage of control 
systems has increased due to the increment in 
complexity of systems under control. The block 
diagram of closed-loop car Suspension System is 
shown in figure (7). 
 

 

 

 

 

 

 

 

 

 
 

Fig.7: Closed loop of car suspension system 
 

 

 

A.  PID controller  

       A proportional-integral-derivative controller (PID 
controller) is a generic control loop feedback 
mechanism (controller) widely used in industrial 
control systems [13]. A PID controller attempts to 
correct the error between a measured process 
variable and a desired set point by calculating and 
then outputting a corrective action that can adjust the 
process accordingly, to keep the error minimal [14]. A 
block diagram of the PID controller is as depicted in 
figure (8).  
 

 

 

 

 

 

 

 

                           
          Fig.8: Block diagram of PID controller 

                                

  

Generally, the equation of the PID controller for the 
figure (8) can be written as [15]. 
 

C(s) = kpR(s) + ki∫𝑅(𝑠)𝑑𝑡 + kd
𝑑𝑅(𝑠)

𝑑𝑡
             (21) 

 

 
where Kp, Ki and Kd are the controller gains, C(s) is 
output signal, R(s) is the difference between the 
desired output and input obtained. By principle of its 
operation, the PID controller takes the error signal and 
computes both its derivative and its integral. The 
signal which is sent to the actuator is equal to the 
proportional gain (KP) times the magnitude of the error 
plus the integral gain (KI) times the integral of the error 
plus the derivative gain (KD) times the derivative of the  
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error. Hence, from equation (21), the PID controller for 
the car suspension system can be given as: 
 

 

U(t) = MV (t) = Kpe(t) + Ki∫ 𝑒(𝑡)𝑑𝑡 + 
𝑡

0
Kd

𝑑𝑒

𝑑𝑡
(t) 

 
                                                                         (22) 

 

 
Thus, the general response of the proportional, 
integral and derivative controller is as shown in table2. 
 

 
TABLE2.     RESPONSE OF PROPORTIONAL, INTEGRAL AND 

DERIVATIVE CONTROLLER 

 

 

 

B.  PID Controller tuning 

          By tuning the three constants in the PID 
controller algorithm, the controller can provide control 
action designed for specific process requirements. 
However, the use of the PID algorithm for control does 
not guarantee optimal control of the system or system 
stability. Some applications may require using only 
one or two modes to provide the appropriate system 
control. This is achieved by setting the gain(s) of the 
undesired control outputs to zero. A PID controller will 
be called a PI, PD, P or I controller in the absence of 
the respective control actions [12, 16]. Moreover, 
some of the prime methods for the PID tuning are: 
Mathematical criteria, Cohen-Coon Method, Trial and 
Error Method, Ziegler-Nicholas Method, Fuzzy Logic, 
Genetic Algorithms, Particle Swarm Optimization, 
Neuro-Fuzzy, Simulated Annealing, Artificial Neural 
Networks and currently soft-Computing techniques. 
In this work the classical PID, the Genetic Algorithms 
and Automatic tuned (Auto-tuned) PID are 
implemented concurrently and simultaneously and the 
results are analyzed and essentially compared. With 
regard to the classical PID tuning, in this work, the 
values of the PID gains are determined by the “root 
curve seat method” which is explained in reference 
[17]. Taking the values for m1, m2, k1, k2, c1, and c2 
as stated in table1 into consideration, the root curve 
seat method gives, for a good controller, 1664200, 
1248150 and 416050 values for Kp, Ki and Kd gains, 
respectively [18]. These gained values are therefore 
used in the control simulation of the P, PI, and PID 
model and also as initial values to obtain new values  
 
 

for the GA-PID and Automatic Tuned PID simulation 
model as illustrated in figure (12a and b).   
 

V.  SIMULATION MODEL OF P, PI, PID, AND 
      COMBINED PID, TUNED PID AND GA-PID 

  WITH QUARTER CAR SUSPENSION SYSTEM 
 

 

A. P Controller with Car Suspension System  

         P controller is mostly used in first order 
processes with simple energy storage to stabilize the 
unstable process. The main usage of the P controller 
is to decrease the steady state error of the system. As 
the proportional gain factor K increases, the steady 
state error of the system decreases. The simulink 
model of the P controller with the car suspension 
system is as pictured in figure (9a). The main purpose 
of this implementation is to obtain the desired 
response of the system. The value of the Kp used for 
the simulation is 1664200.  The result of the 
simulation is shown in figure (9b).  
 
 

 

 

 

 

 

 

 

 

Fig.9a. P controller simulink model 
 

 

 

 

            

 
 

 

 

 

Fig.9b. P controller output response to 0.1 m input 
              

       

      As per the system design requirements, ± 0.005 m 
overshoot is required for a unit high step input of 0.1m 
and a settling time less than 5 seconds is required.  
From Figure (9b), however, the overshoot is about 
0.025 m for the unit step inputs and about 3.7 
seconds for the settling time. This therefore suggests 
that the P-controller could not adequately meet the 
design system requirements in terms of the overshoot.  
 

B.  PI Controller 

        The main purpose of the implementation of the PI 
controller is to obtain the desired response of the 
system. The simulink model of the Car Suspension 
system using PI Controller is pictured in figure (10a), 
and the simulation result is as shown in figure (10b).  
Notice that the values of Kp and Ki used for the 
simulation are 1664200 and 1248150 respectively. 
 

Closed 

loop 

response 

Rise time Overshoot Settling 

time 

Steady 

state error 

Kp Decrease Increase No 
change 

Decrease 

 
Ki 

 
Decrease 

 
Increase 

 
Increase 

 
Eliminate 

 
Kd 

 
No change 

 
Decrease 

 
Decrease 

 
No change 
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Fig.10a: PI controller simulink model 
 

 

 

 

 
 

 

 

 

 

Fig.10b: PI controller output response to 0.1 m input 
 

 

         From figure (10b), the PI simulation results show 
an overshoot of 0.026 m for a unit step input of 0.1 m 
and a settling time of about 3.6 seconds, suggesting 
that the PI controller could not meet the design 
requirements adequately. Also, it must be noted that 
without derivative action, a PI-controlled system is 
less responsive to real and relatively fast alterations in 
state and so the system will be slower to reach set-
point and slower to respond to perturbations than a 
well-tuned PID system. 
 

 

C.  PID Controller 

      The PID controller calculation involves three 
separate parameters, and is accordingly sometimes 
called three-term control. The main purpose of the PID 
controller performance for the car suspension system 
is to get the desired response of the system within 
expected times. The Simulink model of the Car 
Suspension system using PID Controller is as depicted 
in figure (11a) and the results of the simulation are as 
shown in figure (11b). The values of Kp, Ki and Kd 
used are 1664200, 1248150 and 416050 respectively. 

 

 
 

 

 

 

Fig.11a. PID controller simulink model 

 

 

 

 

 

 
      

 

 
         Fig.11b: PID controller Closed loop output response to  
       0.1 m input 
           

 
From figure (11b), the PID simulation results show an 
overshoot of 0.0038 m for unit step input of 0.1 m and 
a settling time of about 1.5 seconds, suggesting that 
the PID controller meet the design requirements. The 
figure (11b) also depicts that people sitting in the Car 
feels very small amount of oscillations for a very short 
time. Hence, by the use of PID Controller, the 
performance characteristics of the suspension system 
are considerably improved. Also, the design 
requirements as stated in section 1.2 of this paper are 
adequately satisfied. 
 

 

D.  Comparison of car suspension system with PID, 
GA-PID and Auto-tuned PID controllers 
 

        The analysis of the Car Suspension System is 
further investigated by comparing the simulation of the 
PID, GA-PID and the Auto-tuned PID controllers. 
Figure (12a) below shows the combined simulink 
model for PID, GA-PID and the Auto-Tuned PID.  For 
the combined simulation, put the value of Kp, Ki and 
Kd, and also put the value of gains found by GA-PID 
and the auto-tuned PID controller block as mentioned 
earlier in the text. The simulation result is as pictured 
in figure (12b). 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

       

      Fig.12a: PID, TUNNED PID, GA-PID Controllers Simulink 
    Model 
 

 

 

 

 

 

 

 

 

 
           Fig.12b: Combined PID, TUNNED PID, GA-PID 
           Controllers Output Response to 0.1 m  

        

It is observed from the comparison of the PID, GA-PID 
and Auto-tune PID combined simulation results that  
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the GA-PID controller has relatively less overshoot of 
0.0008 m and has very small settling time of about 1.1  
seconds as compared to the others for a unit step 
high input of 0.1 m. Table 3 illustrates the analysis of 
figure (12b) and also indicates the comparison of the 
PID, GA-PID and the Auto-tuned PID controller 
response of the car suspension system. 
 

 
TABLE3. COMPARISON OF PID, GA-PID AND AUTO-TUNED PID 

CONTROLLER RESPONSES 

Properties PID GA-PID Auto-Tuned 
PID 

Settling time 1.5 sec 1.1sec 1.30 sec 

Rise time 0.23sec 0.22sec 0.20 sec 

Overshoot 0.0038 m  0.0008 m  0.0018 m  

 

 

 

VI.   CONCLUSIONS 

           This paper presents ¼ model of car suspension 
system using transfer function and state space model 
in Matlab/Simulink. It is observed from the open-loop 
state space response that for a unit step high actuated 
force; the system is under-damped. The overshoot is 
0.08 m for a unit step input of 0.1 m. The settling time 
is 38 seconds which signifies that people sitting in the 
car feel small amount of oscillation for unacceptably 
long time. Therefore, adding a controller into the 
system will be a key to improving the system’s 
performance. In this paper, P controller, PI controller, 
PID, GA-PID and Auto-tuned PID is implemented in 
Simulink to control the vibration to give smooth 
response of car suspension system. It is observed 
that the GA-PID controller gives better and higher 

level of performance of control of the suspension 

system than the rest of the controllers, and also meets 
the suspension design requirements adequately.    
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