
Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 3 Issue 2, February - 2017 

www.jmess.org 

JMESSP13420296 1440 

Optimal Experimental Design for 
Semiconductor Lifetime Mission Profile Testing 

Stefan Schrunner 
KAI – Kompetenzzentrum 

Automobil- und 
Industrieelektronik GmbH 

Villach, Austria 
stefan.schrunner@k-ai.at 

 

Olivia Bluder 
KAI – Kompetenzzentrum 

Automobil- und 
Industrieelektronik GmbH 

Villach, Austria 
olivia.bluder@k-ai.at 

Jürgen Pilz 
Alpen-Adria-Universität 

Klagenfurt 
Klagenfurt, Austria 

juergen.pilz@aau.at 
 

Abstract— Modeling the results of lifetime tests 
for semiconductor devices requires, apart from 
knowledge about the physical failure mechanism, 
statistical tools to find an appropriate model. 
When such models are found, they usually refer to 
one constant stress level in a test environment. 
This is hardly comparable to use-conditions of the 
investigated devices, which change over time. For 
this purpose it is necessary to develop a model 
that includes a sequence of multiple different 
stress levels, e.g. high-stress periods and low-
stress periods, a so-called mission profile. 

An approach from medicine for crossover 
studies - studies where more than one treatment 
is applied to one single proband - is adopted. 
Assuming that lifetime models for single test 
conditions are known, the model can be used to 
combine them. 

In order to execute the experiment efficiently, it 
is necessary to optimally choose the test 
conditions using optimal DoE. In addition prior 
information can be used to improve the optimal 
selection of the design points. In this paper, four 
designs for crossover studies are compared: a 
randomly chosen design, an approximated full 
factorial design, a D-optimal design without prior 
and a D-optimal design including prior 
information. As a result it turns out that the 
developed model is practically applicable and that 
optimal DoE can significantly improve the gained 
information from the experiment at the same 
number of samples.  

Keywords— Accelerated Life Testing, 
Reliability, Semiconductor, Mission Profile, 
Design of Experiments, Optimal DoE 

I. INTRODUCTION 

Quality is an important topic for all industries, 
especially if safety-relevant products are concerned. 
As semiconductor devices control essential functions 
in e.g. cars, their reliability is a crucial field of research 
for each semiconductor manufacturer. 

For this purpose lifetime studies are conducted in a 
lab environment in order to get data for statistical 
modeling. Test acceleration is needed, because 
testing the device under normal use-conditions until 

failure would exceed the available time resources. This 
leads to the idea of accelerated life testing, which 
means to measure the lifetime of the device under 
higher stress conditions than in real application and to 
extrapolate the results [1], [2]. 

When conducting an accelerated life test for 
semiconductor devices in a lab, the stress is produced 
on the test system by a sequence of electric pulses. 
Their intensity depends on the setting of the electric 
input parameters, such as 𝑉 (voltage), 𝐼 (current) and 
𝑡𝑝𝑢𝑙𝑠𝑒  (pulse length). The time period in which one 

pulse is performed is called a test cycle - as test cycles 
are the time unit in accelerated life testing, the total 
lifetime is measured in cycles to failure (𝐶𝑇𝐹). 

The electric load of the pulses evokes a heat-up of 
the material, which is the main source of degradation. 
Especially the peak temperature 𝑇𝑝𝑒𝑎𝑘  (the maximum 

temperature which is reached in the device) and the 
temperature rise Δ𝑇  (difference between the case 
temperature 𝑇𝑐𝑎𝑠𝑒  and 𝑇𝑝𝑒𝑎𝑘 ) are important. The 

relation between these parameters is shown in Fig. 1 
[3]. 

To transfer the process of increasing device 
degradation over time into mathematics, it is described 
by a non-negative, monotonically increasing function. 

The failure of the device occurs when this so-called 
degradation function [4] reaches a critical threshold 
(usually a normalized scale with threshold 1 is used). A 
comprehensive interpretation of such a degradation 
function is to regard it as the "portion (or percentage) 
of consumed lifetime up to the current point in time". 

 

Fig. 1:  Electrical and thermal stress pulse 
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Unfortunately real use-conditions of the devices are 
not constant - instead, they are exposed to stresses 
with varying intensities over time. For devices in the 
automotive industry, this is caused e.g. by temperature 
differences, dependent on seasonal or day/night 
changes, or by occasional failure events like short 
circuits. Together, these time periods are considered 
as a specific stress profile, also called a mission 
profile. It is therefore necessary to build a lifetime 
model for a sequence of stress intensities applied to 
one device within a lifetime study. 

In order to describe the concept of mission profiles 
in a statistical way, a medical approach on so-called 
crossover studies (studies where multiple treatments 
are applied to one single test-object in a temporal 
order) is used [5]. As this medical model does not 
totally fit the given applications, several modifications 
of this approach are necessary to derive a model 
which is applicable to lifetime testing. 

II. THE MODEL FOR CROSSOVER STUDIES 

A. Basic crossover designs from medicine 

As presented in [5], the classical model for 
crossover studies in a medical context is given by  

𝑦𝑖,𝑗 =  𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜏𝑑(𝑖,𝑗) + 𝜌𝑑(𝑖−1,𝑗) + 𝜖𝑖,𝑗 . (1) 

In this formula, the index 𝑖 ∈  {1, … , 𝑝 } refers to the 
period, 𝑗 ∈  {1, … , 𝑁 }  refers to the subject. 𝜇  is the 

grand mean, 𝛼𝑖  denotes the effect of the 𝑖th period and 

𝛽𝑗  denotes the effect of the 𝑗 th subject. 𝑑(𝑖, 𝑗) 

represents the treatment, which is applied to subject 𝑗 
in period 𝑖 . 𝜏𝑑(𝑖,𝑗)  is the main effect of 𝑑(𝑖, 𝑗)  and 

𝜌𝑑(𝑖−1,𝑗) is the carry-over effect of treatment 𝑑(𝑖 − 1, 𝑗), 

i.e. the residual effect of the previous period, which 
influences the following treatment. 

In a medical context carry-over effects are 
unwanted side-effects that have to be considered 
although they are not of any interest. Unfortunately 
carry-over effects can only be avoided by choosing a 
long washout-period, i.e. a long time gap between two 
treatments. This is not possible in medicine for 
reasons of ethics - leaving an ill patient without any 
treatment would not be justified for the purpose of a 
medical investigation. Therefore the modeling of the 
carry-over effect cannot be avoided.  

B. Modifications of the model 

The carry-over effect is the main factor of interest 
when adopting the model to mission profile tests for 
semiconductor devices. From previous work [6], 
lifetime models including parameter estimates for 
accelerated life testing under constant stress 
conditions are available and can be used to build a 
model for a sequence of different treatments, based on 
the semantic idea of the crossover study. 

Intuitively it is probable that the carry-over effect of 
the 𝑖 th period depends on the main effects of the 
previous treatments. Therefore it is assumed that the 

carry-over effect is proportional to the main effect of 
the previous treatment, i.e.  

𝜌𝑑(𝑖−1,𝑗) ∝ 𝜏𝑑(𝑖−1,𝑗). 

Higher-order dependencies of the carry-over effect 
(i.e. dependencies on 𝜏𝑑(𝑖−2,𝑗) , 𝜏𝑑(𝑖−3,𝑗) ,…) are not 

considered at this point as the number of periods 𝑝 is 
restricted to 2 to reduce complexity. Further the 
additive terms for 𝛼𝑖  and 𝛽𝑗  are considered as being 

negligible for the purpose of semiconductor life testing, 
because the period itself has no additive influence on 
the response and all devices are assumed to be 
produced without any pre-damage. 

A fundamental question that arises is how to define 
the response 𝑦𝑖,𝑗   in the experiment. As the survival 

time of the device under test is modeled, a proper 
choice would be to assign a lifetime to the response. 
Unfortunately the lifetime for semiconductor mission 
profile testing cannot be measured in each period, but 
only at the end of the test. It is therefore necessary to 
set 𝑦𝑗: =  𝑦2,𝑗  (which analogously requires to set 

𝜖𝑗: = 𝜖2,𝑗). The resulting model is given by 

𝑦𝑗 =  𝜇 + 𝜏𝑑(2,𝑗) +  𝛾𝜏𝑑(1,𝑗) + 𝜖𝑗. (2) 

In this modified version of (1), 𝑗 ranges from 1 to 𝑁, 
but only one response per experimental object is 
observable. Nevertheless the semantic idea of the 
model is to add one parameter describing the second 
stress (last period) and one referring to the history the 
device experienced (carry-over effect). 

In order to finally use this modified model for 
mission profile testing, it is necessary to define the 
responses 𝑦𝑗 and the effects 𝜏𝑑(1,𝑗) and 𝜏𝑑(2,𝑗) in terms 

of the experimental setup. For this purpose another 
method, the so-called Miner's rule, has to be 
introduced. 

C. Mission profile testing 

For this investigation, it is assumed that a device is 
consecutively exposed to two distinct stress conditions 
- stress period 1 and stress period 2. In the following, 
the number of cycles the object spends within each 
period are denoted by 𝑡1 and 𝑡2, respectively. Further 

𝐶𝑇𝐹𝑖, 𝑖 ∈ {1,2}, are defined as the cycles to failure, if 

the stress condition of the 𝑖th period would have been 
applied constantly until the device fails. 

An approach for dealing with this situation of two 
distinct stress periods in a deterministic model is given 
by the Miner's rule [7]. The Miner's rule claims that, 
regarding one device, summing over the portions of 
period duration 𝑡𝑖 divided by the full lifetime 𝐶𝑇𝐹𝑖 under 
the given stress level equals to 1, i.e. for two periods 

∑ 𝑡𝑖
𝐶𝑇𝐹𝑖

2
𝑖=1 =  1. (3) 

The full lifetime 𝐶𝑇𝐹𝑖  of the device under the 
treatment in period 𝑖  is not directly measurable in a 

crossover lifetime study (to measure 𝐶𝑇𝐹1, the object 
has to be destroyed within the first period, leaving no 
opportunity to experience a second stress period). In 
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order to deal with the suggested model without being 
able to observe 𝐶𝑇𝐹𝑖 , it is regarded as a random 
variable. This random variable is modeled by a 
separate regression model for constant stress 
conditions, e.g. see [1], called the single-treatment 
lifetime model for the 𝑖th stress period. 

Using these single-treatment lifetime models, 

estimators 𝐶𝑇𝐹�̂�  for the expected values  𝐸(𝐶𝑇𝐹𝑖)  can 
be derived and inserted into the Miner's rule, which 
then changes to 

∑ 𝑡𝑖
𝐶𝑇𝐹�̂�

2
𝑖=1 =  1. 

Returning to the modified model for crossover 
studies presented in (2), Miner's rule implies the 
necessary relations in order to define 𝑦𝑗  and 𝜏𝑑(𝑖,𝑗) , 

𝑖 ∈ {1,2}. First we choose that the response 𝑦𝑗 = 𝑡2 , 

i.e. the survival time of the jth device in the second 
(and therefore last) period. Rearranging the Miner's 
rule to 𝑡2 leads to  

t2 = CTF2̂ −
CTF2̂

CTF1̂
⋅ t1. 

Taking this formula as a basis, the single-treatment 

effects 𝜏𝑑(𝑖,𝑗), 𝑖 ∈ {1,2}, from the derived model in (2) 

are chosen as given below: 

𝜏𝑑(𝑖,𝑗) = 
𝐶𝑇𝐹2,𝑗̂

𝐶𝑇𝐹1,𝑗̂
⋅ 𝑡1,𝑗  

𝜏𝑑(2,𝑗) =  𝐶𝑇𝐹2,𝑗̂   

Inserting these parameters into the model in (2), an 
additional model parameter 𝛾2  for the first term is 
added to ensure more flexibility. This results in the 
following linear model for mission profile testing: 

𝑡2,𝑗 =  𝜇 + 𝛾2𝐶𝑇𝐹2,𝑗 + 𝛾1
𝐶𝑇𝐹2,𝑗̂

𝐶𝑇𝐹1,𝑗̂
𝑡1,𝑗 + 𝜖𝑗. 

Setting 𝜇 = 0 , 𝛾2 =  1  and 𝛾1 = (−1) , this model 
equals to the Miner's rule presented in (3), for each 
device 𝑗 if the error 𝜖𝑗 is 0. 

III. OPTIMAL DOE FOR MISSION PROFILE TESTING 

Apart from building an appropriate model, it is 
necessary to select an appropriate DoE approach for 
it. A fundamental choice is whether classical DoE (full 
or fractional factorial designs) or optimal DoE shall be 
used. 

In this paper optimal DoE is chosen, because this 
offers significant advantages. Some of these 
advantages for the given problem, according to [8], 
are: 

 Optimal DoE can cover restrictions on the 
design space, which is necessary as either 
the test system might not be able to apply 
all combinations of electrical parameters, or 
they are not feasible for a given product. 

 The number of experimental units that are 
available can be specified when using 
optimal DoE. 

 Prior knowledge about the model can be 
included when selecting an optimal design 
(Bayesian optimal DoE). 

The most relevant drawback of optimal DoE is that 
the complexity of the concerned methods is higher - 
leading to higher effort for the DoE. 

A. D-optimality criterion 

When applying optimal DoE an important choice is 
to select an appropriate design criterion Ψ, which is 
used to optimize the design over the design space Ξ. 
In the given case, D-optimality (i.e. minimal volume of 
the confidence ellipsoid of the estimator for the model 
parameters) is used. For this purpose, the design 
information matrix is defined in the following way: 

𝐼 =  𝑋′𝑋. 

𝑋 denotes the design matrix containing all selected 

design points. The design criterion Ψ is defined as the 

determinant of 𝐼 , i.e. Ψ(𝐷) = |𝐼|, 𝐷 ∈ ΞN . An optimal 
design 𝐷𝑜𝑝𝑡 including 𝑁 design points is found if 

𝐷𝑜𝑝𝑡 = argmax𝐷∈Ξ𝑁 Ψ(𝐷).  

The D-optimality criterion leads to a unique optimal 
design information matrix 𝐼 , but several different 

optimal designs 𝐷𝑜𝑝𝑡  share the same 𝐼 . Therefore a 

secondary design criterion Ψ2 is needed to improve the 
selection of an optimal design. As design points can be 
repeated in optimal designs, we define 𝑤 as the vector 

of weights, indicating how often each design points is 
chosen, and set 𝑋 as the matrix of the 𝑞 distinct design 

points 𝑥1, … , xq  of the design. With this the design 

information matrix can be re-written as: 

𝐼 = ∑ 𝑤𝑖𝑥𝑖𝑥𝑖
′𝑞

𝑖 . (4) 

Under all D-optimal designs for semiconductor 
lifetime testing, a design with a high number of points 
and a balanced weight vector is preferred - i.e. the 
secondary optimality criterion is defined by: 

Ψ2(𝐷) = ‖𝑤𝐷‖2
𝐷… 𝐷−𝑜𝑝𝑡𝑖𝑚𝑎𝑙
→           𝑚𝑖𝑛  

Although both criteria Ψ  and Ψ2  do not ensure 
uniqueness of the resulting optimal design, each 
resulting design fulfills all requirements for an efficient 
lifetime study and therefore no further selection will be 
made. 

B. Bayesian optimal DoE 

As an extension of classical DoE methods based 
on [9], Bayesian DoE can include expert knowledge 
about the investigated model parameters. For this 
purpose an a-priori probability distribution is defined for 

the unknown parameters 𝜃 = (𝜇, 𝛾2, 𝛾1)
𝑇 . The prior 

mean indicates where the parameters are supposed to 
be located according to the expert knowledge, the prior 
covariance matrix (especially the variances) indicates 
the certainty of this statement. A low variance indicates 
a high certainty about the parameter being located in a 
small interval around the prior mean. In the analysis, 
prior information is treated as if additional data points 
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were available and hence it can reduce the testing 
effort. 

For Bayesian DoE methods for linear regression 
models, only the prior covariance matrix Σ  is of 
interest. The design information matrix is extended by 
the prior to 

𝐼𝐵 =  𝐼 +  Σ
−1. 

The optimality criterion for the Bayesian approach 
is called 𝐷𝐵 -optimality and can be calculated in the 
same way as without prior knowledge, but using the 
Bayesian design information matrix 𝐼𝐵. Therefore, the 

𝐷𝐵-optimality criterion Ψ𝐵  is defined as Ψ𝐵(𝐷) =  |𝐼𝐵|, 
the optimal design fulfills 

𝐷𝑜𝑝𝑡  =  arg max𝐷∈Ξ𝑁 Ψ
𝐵(𝐷).  (5) 

Since prior information increases the certainty 
about the parameter estimates, the volume of the 
parameter confidence ellipsoid is reduced, leading to a 
larger value of the information criterion. Consequently, 
the following relation holds: 

Ψ𝐵(𝐷) >  Ψ(𝐷)  ∀𝐷 ∈ Ξ𝑁.  

C. Exchange algorithm 

In general it is not trivial to find a design 𝐷𝑜𝑝𝑡, which 

is optimal with respect to the mentioned optimality 
conditions, therefore an algorithm for the optimization 
is needed. A popular class of algorithms for optimal 
DoE, which are applicable to various different 
optimality criteria, is the class of exchange algorithms 
based on the famous Fedorov algorithm [10]. Many 
modifications of the latter are available, in the given 
context the version by Cook and Nachtsheim from [11] 
is used. 

Starting with an initial design 𝐷0 (which is assumed 

to be random in this work), each point 𝑥𝑖 in the design 

is replaced by the point 𝑥𝑖
∗  from the design space Ξ, 

which maximizes the value of the optimality criterion Ψ 

given that all other points 𝑥𝑗, 𝑗 ≠  𝑖, are fixed. Applying 

this procedure sequentially on each design point in 𝐷 
until no further improvement is possible leads to an 
optimal design 𝐷𝑜𝑝𝑡. 

The exchange algorithm is implemented in several 
packages in different programming languages. For the 
practical example in Section IV, a package in the 
programming language R was implemented. 

IV. PRACTICAL EXAMPLE 

In order to show how the described model for 
mission profile testing is applied in practice, the 
following example is used: two specific single-
treatment lifetime models are chosen according to 
results from previous research. The idea behind is to 
simulate a normal load condition (use-case), followed 
by an overload condition. 

 

A. The model setup 

The first treatment (treatment 1) is used to simulate 
a use-case, the other is used for testing under 
overload conditions (treatment 2). Single-treatment 
models for both situations, i.e. lifetime models for 
constant load over the whole testing time, are 
presented in [1]. The time of the first treatment is set 
as an additional input parameter 𝑡1,𝑗. 

The use-case treatment is simulated using the 
following generalized linear model 

𝑙𝑜𝑔(𝐶𝑇𝐹1) =  𝑙𝑜𝑔(𝐴1) + 𝛼 𝑙𝑜𝑔(𝑡𝑝𝑢𝑙𝑠𝑒) +

 𝛽1  𝑙𝑜𝑔(Δ𝑇1) +
Δ𝐻

𝑘 𝑇𝑝𝑒𝑎𝑘
 + 𝜖1. (6) 

In this model 𝑘 is the Boltzmann constant, 𝑙𝑜𝑔(𝐴1), 
𝛼, 𝛽1 and Δ𝐻 are the model parameters and 𝑡𝑝𝑢𝑙𝑠𝑒, Δ𝑇1 

and 𝑇𝑝𝑒𝑎𝑘  are the input parameters of the model as 

introduced in Fig. 1. 

In a similar, reduced way, the second treatment is 
described by 

𝑙𝑜𝑔(𝐶𝑇𝐹2) =  𝑙𝑜𝑔(𝐴2) + 𝛽2 𝑙𝑜𝑔(Δ𝑇2) + 𝜖2. (7) 

Compared to the model given in (6), the set of input 
parameters for this model reduces to one single 
parameter Δ𝑇2 , due to the setup of the applied test 
pulse. 

The intervals for the ranges of the input parameters 
for both models are presented in TABLE 1. 

To apply one single treatment over the whole 
lifetime of a device, the model parameters log(A1) , 
log(A2), α, etc. of each of these two models in (6) and 
(7) are available from previous works [6]. 

The design space Ξ  of the mission profile test 
contains the parameters of both treatments and the 
number of cycles of the first treatment t1 , i.e. each 

d ∈ Ξ is 5-dimensional: 

d  =

(

 
 

t1
ΔT1
Tpeak
tpulse
ΔT2 )

 
 

. 

In addition to the intervals in TABLE 1, further 
constraints on the design space are caused by the test 
system and the single-treatment lifetime models. 
Especially a constraint, which assures that the time of 
the first treatment 𝑡1  does not exceed the expected 
lifetime of this treatment 𝐶𝑇𝐹1  is needed. Otherwise 
the device may fail already within the period of the first 
treatment, which is a case that is not covered in the 
presented model. All constraints can be formulated as 
a system of linear and non-linear equations of the input 
parameters [3]. All these mentioned constraints need 
to be considered, which is not conform with the use of 
any classic DoE approach. 
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TABLE 1: RANGES FOR INPUT PARAMETERS OF THE SINGLE-TREATMENT 

LIFETIME MODELS 

Parameter Treatment 1 Treatment 2 

Δ𝑇 [150,250] [250,350] 

𝑇𝑝𝑒𝑎𝑘 [300,350] − 

𝑡𝑝𝑢𝑙𝑠𝑒 [0.2,3.5] − 

For a given set of input parameters Δ𝑇1,𝑗 , 

Δ𝑇2,𝑗 , 𝑇𝑝𝑒𝑎𝑘 , …, the estimators for 𝐶𝑇𝐹1̂  and 𝐶𝑇𝐹2̂  can 

be calculated by using the estimators for the model 
parameters of both single-treatment lifetime models (6) 
and (7), available from [6]. The design matrix 𝑋 for the 
model for mission profile testing can be obtained, 
according to (4), by 

𝑥𝑗  = (

1
𝐶𝑇𝐹2,𝑗̂

𝐶𝑇𝐹2,𝑗̂

𝐶𝑇𝐹1,𝑗̂ 𝑡1,𝑗

) . 

With this, the information matrix 𝐼 = 𝑋′𝑋  can be 
calculated, which is necessary to apply an optimality 
criterion for DoE. 

B. Prior information for Bayesian approach 

To apply the Bayesian approach on optimal DoE it 
is necessary to specify a prior distribution. For this 
example, the prior is defined by heuristic means. 

A special case of the model is the Miner's rule - in 
case that the Miner's rule fits the data exactly, the 
values for the model parameters are 𝜇 =  0 , 𝛾2 = 1 
and 𝛾1 = (−1). The selection of this set of parameters 
is therefore considered as the prior mean. The prior 
variance of the mean 𝜇 is assumed to be high as no 
information about this parameter is available - the a-
priori variance is chosen as 𝜎1,1

2 = 100. According to 

observations from foregoing experiments, 𝛾2  and 𝛾1 
are assumed to be in a range of ±1 around their mean 

values with a probability of 0.9, i.e. 𝜎2,2
2 = 𝜎3,3

2 ≈  0.37. 

This choice leads to the issue that the value 0 is 
possible for both parameters according to the prior, 
nevertheless it is not realistic regarding the deduction 
of the model, but specifying a more informative prior is 
not justified. Further, independence is assumed for the 
parameters, which leads to the prior covariance matrix  

Σ =  (
100 0 0
0 0.37 0
0 0 0.37

) . 

For the calculation of the information criterion in the 
context of the Bayesian approach, the 𝐷𝐵 -optimality 
criterion needs to be applied: Due to the incorporation 
of prior information, in general higher values of the 

design criterion Ψ𝐵, defined in (5), compared to Ψ are 
returned even for randomized designs. 

More accurate prior knowledge may be available in 
the future, after completing further physical 
investigations about the damaging process. 

C. Design optimization for mission profile testing 

For the concrete case in this example, an initial 
design 𝐷𝑖𝑛𝑖𝑡 with 16 design points is sampled and then 
optimized (with and without a Bayesian approach). The 
resulting D-optimal design 𝐷𝑜𝑝𝑡  (without prior) and the 

𝐷𝐵 -optimal design 𝐷𝑜𝑝𝑡
𝐵  are created by applying the 

Fedorov exchanged algorithm explained in Subsection 
III.C. 

Apart from 𝐷𝑖𝑛𝑖𝑡 , 𝐷𝑜𝑝𝑡   and 𝐷𝑜𝑝𝑡
𝐵 , an additional 

design is introduced for reasons of comparability: a full 
factorial design from classical DoE is approximated. 
The approximation is needed because the described 
restrictions of the design space do not allow the use of 
an exact full factorial design. 

By sampling random values from the given input 
ranges (see TABLE 1), points on the design space are 
simulated via the calculation of their single-treatment 
expected lifetime. Analog to the classical DoE theory 
[12], the minimum and maximum lifetimes are used for 
the approximated classical DoE. This design is 
denoted by 𝐷𝑐𝑙𝑎𝑠𝑠𝑖𝑐  and shall represent a more 
heuristic design selection procedure compared to the 
other approaches. 

To compare these four designs, the first 
characteristic number is given by the value of the 
design functional Ψ . As the absolute value of Ψ  is 
dimensionless, the increase compared to Ψ(𝐷𝑖𝑛𝑖𝑡) , 
which is related to the gained information, is 
calculated. 

Unfortunately real test results are not available yet, 
but for a detailed comparison of the increase in 
information by optimal DoE, a set of simulated data is 
used to sample responses for the mission profile test 
with predefined parameters. With this simulated data 
set, the model parameters 𝜇, 𝛾2 and 𝛾1 are estimated. 
The standard error of the estimated parameters is then 
inversely linked to the information given by the 
optimality criterion, meaning that the lower the error, 
the higher the level of information. 

V. RESULTS 

Based on a randomly sampled initial design 𝐷𝑖𝑛𝑖𝑡 
containing 16 distinct design points (without 
replication), the exchange algorithm returns an 
optimized design 𝐷𝑜𝑝𝑡  with 5 different design points. 

The associated weights vector 𝑤 = (5,4,3,3,1)𝑇, which 

means that the single points are repeated one to five 
times each. Graphically, they are widely distributed 
over the design space. 

Taking the prior information into account and 
applying the Bayesian optimal DoE approach leads to 

the design 𝐷𝑜𝑝𝑡
𝐵 , which contains 4 distinct points. 

These 4 points are a subset of 𝐷𝑜𝑝𝑡  and the weights 

vector 𝑤  is given by 𝑤 = (5,4,4,3)𝑇 . All points are 

associated with the same weights as in 𝐷𝑜𝑝𝑡 except for 

one, which is repeated 4 instead of 3 times in 𝐷𝑜𝑝𝑡
𝐵 . 
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In the classic design 𝐷𝑐𝑙𝑎𝑠𝑠𝑖𝑐, the number of distinct 
design points is predefined by selecting the maximum 
and the minimum on each of the two coordinate axes, 
resulting in 4 data points. The weights are set to 

𝑤 = (4,4,4,4)𝑇.  

The resulting values of the design criterion Ψ 
applied to the designs and their relative increase 
compared to Ψ(𝐷𝑖𝑛𝑖𝑡)  are shown in TABLE 2. It is 

important to consider that the value for 𝐷𝑜𝑝𝑡
𝐵  is 

calculated using the design criterion Ψ𝐵   including the 
prior information, which leads to a higher absolute 
value, which is not directly comparable to the absolute 
value of the other designs. The relative raise for this 
design is lower than for the other designs as the prior 
information is already taken into account for the initial 
design 𝐷𝑖𝑛𝑖𝑡. 

After comparing the values of the design criterion, 
the responses of the mission profile test are simulated 
for each design points of 𝐷𝑖𝑛𝑖𝑡 , 𝐷𝑐𝑙𝑎𝑠𝑠𝑖𝑐 , 𝐷𝑜𝑝𝑡  and 𝐷𝑜𝑝𝑡

𝐵  

by using predefined model parameters ( 𝜇 = 100 , 

𝛾2 = 0.8 , 𝛾1 = −1.4 ) and randomly generated errors 
with a 𝑁(0,25) distribution. Using this data, the model 
parameters and their standard errors are estimated by 
the least squares method and presented in TABLE 3. For 
the Bayesian design, the prior information is 
considered in the least squares estimation. 

For the comparison of the designs, the standard 
error is a more significant quality criterion than the 
point estimators, because if the design points are 
spread over the whole design space, slight variations 
do not affect the point estimator significantly (see: 
TABLE 3). Instead the standard error reflects the quality 
of information given in the data. As a result of the 
investigation, one can see that the standard errors for 
the model for mission profile testing parameter 
estimates decrease from 𝐷𝑖𝑛𝑖𝑡 to 𝐷𝑐𝑙𝑎𝑠𝑠𝑖𝑐  by factors up 
to 2. Comparing 𝐷𝑐𝑙𝑎𝑠𝑠𝑖𝑐  and 𝐷𝑜𝑝𝑡 , a further 

improvement by nearly the same factor is achieved. 
The Bayesian design 𝐷𝑜𝑝𝑡

𝐵  leads to the smallest error 

of all designs, meaning that this design will provide 
data with the highest level of information. 

Finally, modeling mission profiles using the 
suggested model is possible and applicable for the 
described problem. Optimal DoE significantly improves 
the information gained out of a study and can even be 
enriched with the use of a-priori knowledge. 

TABLE 2: COMPARISON OF DESIGN CRITERION VALUE Ψ OF THE DESIGNS 

Design Absolute value Relative raise 

𝐷𝑖𝑛𝑖𝑡 60.5 − 

𝐷𝑐𝑙𝑎𝑠𝑠𝑖𝑐 487.3 8.05 

𝐷𝑜𝑝𝑡 1600 26.44 

𝐷𝑜𝑝𝑡
𝐵  2697 4.79 

 

TABLE 3: ESTIMATED MODEL PARAMETERS AND STANDARD ERRORS FOR 

THE FOUR COMPARED DESIGNS 

 𝐃𝐢𝐧𝐢𝐭 𝐃𝐜𝐥𝐚𝐬𝐬𝐢𝐜 𝐃𝐨𝐩𝐭 𝐃𝐨𝐩𝐭
𝐁  

Estimates 

�̂� 104.73 93.16 97.71 95.69 

𝛾2̂ 0.80 0.80 0.80 0.80 

𝛾1̂ −1.40 −1.40 −1.40 −1.40 

Standard Errors 

�̂� 2.0 ∗ 101 2.0 ∗ 101 2.0 ∗ 101 2.0 ∗ 101 

𝛾2̂ 2.1 ∗ 10−3 2.1 ∗ 10−3 2.1 ∗ 10−3 2.1 ∗ 10−3 

𝛾1̂ 4.6 ∗ 10−3 4.6 ∗ 10−3 4.6 ∗ 10−3 4.6 ∗ 10−3 

VI. CONCLUSION 

In summary, the task was to derive a statistical 
model for the lifetime of a semiconductor device under 
a mission profiles in order to efficiently apply 
accelerated life testing. An approach from medicine, 
the so-called crossover study model was introduced 
and modified for this purpose. After several 
transformations and considerations, the resulting 
model is also a generalization of the Miner's rule, 
which describes the cumulative effect of different 
stress intensities. 

To optimize the gain of information in the study at a 
limited number of performed tests, optimal DoE is 
applied. Therefore, the D-optimality criterion is used, 
combined with an approach to select balanced 
designs, realized by a secondary optimality criterion. 
Then a modified version of the Fedorov exchange 
algorithm is used in order to generate an optimal 
design out of a randomized initial design. Additionally 
a-priori information can be introduced by using a 
Bayesian optimal DoE approach, which is also 
compatible with the employed algorithm. 

In a practical example with two specific single-
treatment lifetime models and 16 design points, 
different designs were analyzed and compared. In the 
end, the optimized design for crossover studies 
provided a significantly higher gain of information 
compared to the randomized initial design and to a 
classical full-factorial design. 

Several generalizations of the suggested model 
would be possible. One example would be to increase 
the number of periods, which was set to 2 in this study. 
This is possible using the suggested derivation of the 
model. Nevertheless the case of devices failing before 
the last period have to be taken into account in this 
case. 

Also the DoE procedure could be extended, for 
example by using a different optimality criterion or by 
selecting a more specific prior. Further topics, which 
need to be investigated will appear after realizing a 
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mission profile test for semiconductor devices applying 
the proposed model and procedure. 
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