Effect Of Salicylic Acid And Varieties On Incidence Of Aphid And Yield Of Mustard

Fatima Tuz Zohora Mony¹, Md. Sahadat Ali², Md. Nazrul Islam^{3*}, Shormin Choudhury³ and Mohammed Sakhawat Hossain¹

¹Department of Entomology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh.

²Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh.

²Department of Horticultural Science, Technical University of Munich, Freising- 85354, Germany

³Department of Horticulture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh. **Corresponding author***= Tel: +88 02 9136653, E-mail: nislams2000@gmail.com

Corresponding author*= Tel: +88 02 9136653, E-mail: nislams2000@gma Abstract—Aphids are one of the vital agricultural Introduction of uncontrollal
nests and cause extensive damage to the plants and phytoplagma [8] [10] b

pests and cause extensive damage to the plants and yield of crops each year. It is one of the most damaging biotic stresses of mustard plant. It is mainly host specific, sucks phloem sap, retards growth and results poor pod formation. Plants have a unique capacity to coup with different insects and pests using various compounds from nature. Salicylic acid (SA) is a phenolic compound, responses as an endogenous signal imparting systematic plant protection against plant pathogens. It also has crucial role in minimizing the infestations and effects of both biotic and abiotic stresses, for example, aphid, insects, salinity, drought, osmotic stress and other toxicity. Moreover, physiological and biochemical mechanisms within the plants are somehow controlled by SA. This study was conducted to test the incidence of aphid in mustard plant in presence of different doses of salicylic acid and different varieties as aphids are highly host specific. Here we found, higher the concentrations of SA lower the rate of infestation of aphids by improving resistant mechanisms of different mustard varieties.

Keywords—Salicylic acid, Aphids, Yield and Mustard plants

Introduction

Mustard is one of the most important oil crops of the world after soybean and groundnut [1]. During entire life cycle, crop plants have to face different exogenous stresses which retard the normal development and yield of crop plant [2]. Aphids are important agricultural pest which play a vital role for considerable yield losses by feeding crop plant as well as acting as a vector for transmitting viral diseases among individual plants [3]. [4]. [5]. [6]. The removal of photoassimilate from the phloem structure of plant devitalizes the plant completely and drastically damages the crop yield [7]. [8]. Introduction of uncontrollable pathogenic viruses [9] and phytoplasma [8] [10] bring detrimental situation of plant growth and economic yield. Incidence of Mustard aphid can even cause up to 70% yield because of rapid multiplication damage of population. It can withstand or even change some important chemicals which act as herbivores deterrents [11]. [12]. Salicylic acid (C₇H₆O₃) is an endogenous growth regulator of phenolic nature, which participates in the regulation of physiological processes in plant, such as stomatal closure, ion uptake. inhibition of ethylene biosynthesis, transpiration and stress tolerance [13]. Plant growth regulators (PGRs) are organic compounds, which play an essential role in many aspects of plant growth and development [14]. [15]. PGRs can improve the physiological efficiency including photosynthetic ability and can enhance the effective partitioning of accumulates from source and sink in the field crops [16]. Salicylic acid plays a significant role in plant water relations [17], photosynthesis, growth and stomatal regulation under abiotic stress conditions and also created defense mechanism against insect pests [18]. [19]. Moreover, SA creates plant tolerance capacity to different biotic and abiotic stresses by helping to gain systemic acquired resistance [20]. [21]. [22]. Exogenous application as well as synthesis of SA in plant is a part plant defense mechanism [22]. [23]. In this experiment, higher concentration (S2: 0.4 mM SA) of SA causes higher yield because of lower aphid's infestation. More aphid incidence found in control and plot with lower exogenous application of SA. Different varieties also performed differently in aphid preference for their genotypic characters. Thus, the experiment was conducted to assess the infestation level of aphid in mustard due to the application of salicylic acid on different mustard varieties and their effects on the seed yield of mustard.

Materials Methods:

Experimental period

The experiment was conducted during the period from November, 2014 to March, 2015.

Site description

The present piece of research work was conducted in the experimental area of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka. The location of the site is $23^{0}74'$ N latitude and $90^{0}35'$ E longitude with an elevation of 8.2 meter from sea level.

Climatic condition

The climate of experimental site is subtropical, characterized by three distinct seasons, the monsoon

from November to February and the pre-monsoon period or hot season from March to April and the monsoon period from May to October. The monthly average temperature, humidity and rainfall during the crop growing period were collected from Weather Yard, Bangladesh Meteorological Department, and presented in Table 1. During the experimental period the maximum temperature (27.1°C) was recorded from February, 2015 and the minimum temperature (12.4°C) from January, 2015, highest relative humidity (78%) was observed from November, 2014, whereas the lowest relative humidity (67%) and highest rainfall (30 mm) was recorded in February, 2015.

Table	1:	Monthly	record	of	air	temperature,	relative	humidity,	rainfall	and	sunshine	hour	of	the
experi	men	ntal site du	ring the	per	riod f	from Novembe	er 2013 to	March 201	4					

Month	*Air temperature	(°c)	*Relative	Total I	Rainfall	*Sunshine
WORU	Maximum Minimum		humidity (%)	(mm)		(hr)
November, 2013	25.8	16.0	78	00		6.8
December, 2013	22.4	13.5	74	00		6.3
January, 2014	24.5	12.4	68	00		5.7
February, 2014	27.1	16.7	67	30		6.7
March, 2014	28.1	19.5	68	00		6.8

* Monthly average,

* Source: Bangladesh Meteorological Department, Agargoan, Dhaka - 1212

Characteristics of soil

The soil of the experimental field belongs to the Tejgaon series under the Agroecological Zone, Madhupur Tract (AEZ-28) and the general soil type is Shallow Red Brown Terrace soil. A composite sample was made by collecting soil from several spots of the field at a depth of 0-15 cm before the initiation of the experiment. The collected soil was air-dried, grind and passed through 2 mm sieve and analyzed at Soil Resources Development Institute (SRDI), Khamarbari, Farmgate, Dhaka for some important physical and chemical properties. The soil was having a texture of silty clay with pH and organic matter 6.1 and 1.13, respectively. The results showed that the soil composed of 27% sand, 43% silt and 30% clay, which have been presented in Table 2.

Treatment of the experiment

The experiment comprised of two factors. Factors A: Levels of salicylic acid (3 levels: S_0 : 0 mM SA (control); S_1 : 0.2 mM SA and S_2 : 0.4 mM SA. Factor B: Mustard varieties (5 mustard varieties: V_1 : BARI Sarisha-1; V_2 : BARI Sarisha-13; V_3 : BARI Sarisha-14; V_4 : BARI Sarisha-15 and V_5 : BARI Sarisha-16. There were in total 15 (3×5) treatment combinations such as S_0V_1 , S_0V_2 , S_0V_3 , S_0V_4 , S_0V_5 , S_1V_1 , S_1V_2 , S_1V_3 , S_1V_4 , S_1V_5 , S_2V_1 , S_2V_2 , S_2V_3 , S_2V_4 and S_2V_5 . Experimental design

The two-factor experiment was laid out in a Randomized Complete Block Design (RCBD) with three replications. The experiment area was divided into three equal blocks. Each block contained 15 plots where 15 treatments combination were allotted at random. There were 45-unit plot altogether in the experiment. The size of each plot was $2.0 \text{ m} \times 1.0 \text{ m}$.

The distance maintained between two blocks and two plots were 1.0 m and 0.5 m respectively.

Counting of aphid

The mustard plants were closely examined at regular intervals at flowering and fruiting stage. Aphid from 10 plants were recorded at early, mid and late flowering and fruiting stage and converted per plant. The insect population was collected by a needle brush in a Petri dish.

Determination of plant infestation

All the healthy and infested plants were counted from 1 m^2 selected area from middle place of each plot and examined. The collected data were divided into flowering and fruiting stage. The healthy and infested plants were counted and the percent plant damage was calculated using the following formula:

Plant infestation (%)= $\frac{Number of plant infested}{Total number of plants} \times 100$

Table 2: Characteristics of the soil of experimental field analyzed by Soil Resources Development Institute (SRDI), Khamarbari, Farmgate, Dhaka

Morphological features	Characteristics	Physical and chemical properties	Value
Location	Agronomy field, SAU, Dhaka	% Sand	27
AEZ	Madhupur Tract (28)	% Silt	43
General Soil Type	Shallow red brown terrace soil	% Clay	30
Land type	High land	Textural class	Silty-clay
Soil series	Tejgaon	pH	5.6
Topography	Fairly leveled	Organic carbon (%)	0.45
Flood level	Above flood level	Organic matter (%)	0.78
Drainage	Well drained	Total N(%)	0.03
		Available P (ppm)	20.00
		Exchangeable K (me/100 g soil)	0.10
		Available S (ppm)	45

Source: SRDI, Khamarbari, Farmgate, Dhaka

Procedure of data collection

Plant height

The plant height was measured at harvest with a meter scale from the ground level to the top of the plants and the mean height was expressed in cm.

Number of siliqua plant⁻¹

Numbers of total siliqua of selected plants from each plot were counted and the mean numbers were expressed as plant⁻¹ basis. Data were recorded as the average of 5 plants selected at random from the inner rows of each plot.

Length of siliqua

Length of siliqua was taken from randomly selected ten siliquae and the mean length was expressed on siliqua⁻¹ basis.

Weight of 1000 seeds

One thousand cleaned, dried seeds of mustard were counted from each harvest sample and weighed by using a digital electronic balance and weight was expressed in gram (g).

Seed yield

The seeds collected from 1 square meter of each plot were sun dried properly. The weight of seeds was taken and converted into yield in t/ha.

Stover yield

The stover collected from 1 square meter of each plot was sun dried properly. The weight of stover was taken and converted into yield in t/ha.

Statistical analyses

The data obtained for different parameters were statistically analyzed to find out the effect of salicylic acid and variety on preference of aphid in mustard. The mean values of all the recorded characters were evaluated and analysis of variance was performed by the 'F' (variance ratio) test. The significance of the difference among the treatment combinations of means was estimated by Duncan's Multiple Range Test (DMRT) at 5% level of probability [24].

Results and discussion

The experiment was conducted to find out the effect of salicylic acid and varieties on incidence of aphid and yield of mustard. Data were recorded on aphid infestation at flowering and fruiting stage, plant infestation at flowering and fruiting stage, yield contributing characters and yield of mustard. The results have been presented and possible interpretations are given under the following headings:

Abundance of aphid

Flowering stages

SA creates plant tolerance capacity to different biotic and abiotic stresses by helping to gain systemic acquired resistance [20]. [21]. [22]. In this experiment, different levels of salicylic acid and mustard variety in terms of number of aphid per plant at early, mid and late flowering stage gave different statistically significant data. In early stage, S_2V_2 (0.4mM SA and BARI Sarisha-13) worked significantly against aphid infestation showing less number of aphid in flowering stage, which is statistically similar with S_2V_5 (Table 3). While in mid and late stages, interaction of S_2V_2 performed well against aphid infestation than other combinations (Table 3). The nature and content of damages caused by aphid depend on the variety of aphid and host plant species [6]. Salicylic acid reduces the number of aphid on inflorescences [25].

Fruiting stages

The period of fruit formation is one of the critical and sensitive stages in concern of yield. Any stress in this time can cause drastic fall down of yield. Especially aphid infestation, because aphid have the capability of reproducing very quickly and can injure plant within a very small window of time. Cabbage aphid is most abundant and destructive on canola during capsule forming period [22].

T	Number of aphid at flowering stage of						
1 reatment	Early	Mid	Late				
S_0V_1	3.67 a	3.77 a	4.47 a				
S_0V_2	3.17 bcd	3.63 abc	4.37 a				
S_0V_3	2.97 cd	3.67 ab	4.00 abc				
S_0V_4	2.93 d	3.20 b-е	3.07 e				
S_0V_5	2.87 d	3.33 а-е	3.77 bcd				
S_1V_1	2.90 d	3.53 a-d	3.83 bcd				
S_1V_2	2.70 d	3.10 d-f	3.37 de				
S_1V_3	2.97cd	3.17 b-f	3.40 de				
S_1V_4	3.20 a-d	3.30 а-е	3.70 bcd				
S_1V_5	2.87 d	3.13 c-f	3.60 cd				
S_2V_1	3.47 ab	3.27 b-е	3.70 bcd				
S_2V_2	2.23 e	3.00 ef	3.07 e				
S_2V_3	2.93 d	3.30 а-е	3.67 bcd				
S_2V_4	3.43 abc	3.60 a-d	4.17 ab				
S_2V_5	2.27 e	2.70 f	3.00 e				
LSD (0.05)	0.433	0.430	0.458				
Significance level	0.01	0.05	0.01				
CV (%)	8.71	7.73	7.47				

Table 3. Interaction	effect of salicylic acid	and variety on nur	nber of aphid at flow	ering stage of mustard

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability

S0: 0 mM SA (control) S1: 0.2 mM SA S2: 0.4 mM SA

V1: BARI Sarisha-1 V2: BARI Sarisha-13 V3: BARI Sarisha-14 V4: BARI Sarisha-15 V5: BARI Sarisha-16 In our experiment, it is also found that in early fruiting stage aphid infestation was higher than mid and late fruiting stage (Table 4). Application of SA increase the defense mechanism of plants against both biotic and abiotic stresses. Exogenous application of SA improves systemic defenses and reduces potato aphid on tomato [26]. Statistically significant variation was recorded due to the interaction effect of different levels of salicylic acid and mustard variety in terms of number of aphid per plant at early, mid and late fruiting stage (Table 4). In almost every stage, the treatment combination S_2V_5 (0.4mM SA and BARI Sarisha-13) showed less

infestation (4.30) of aphid. Interestingly, S_1V_2 (0.2 mM SA and BARI Sarisha-13) also show comparatively less aphid infestation, where S_2V_2 also gave approximately same result. Both the combination contains same variety but different SA doses. So, can also be conferred that lower doses of SA give less aphid infestation and higher yield. [31] showed that higher amount of SA can cause to salicylate intoxication. The highest number of aphid (4.83) found from the treatment combination of S_0V_1 (0 mM SA (control) and BARI Sarisha-1). So, it can be concluded that application of SA has impact on aphid infestation and yield in mustard plant.

Table 4. Effect of sancyfic actu and variety on number of aping at fruiting stage of mustary	Table 4. Effect of salid	cylic acid and variety	on number of aphid	at fruiting stage of mustard
--	--------------------------	------------------------	--------------------	------------------------------

Tuesting	Number of aphid at fruiting stage of							
1 reatment	Early	Mid	Late					
S_0V_1	4.83 a	4.27 a	3.07 a					
S_0V_2	4.77 ab	3.90 bc	2.37 bc					
S_0V_3	4.67 ab	3.80 bcd	2.43 b					
S_0V_4	3.87 de	3.27 f	2.37 bc					
S_0V_5	4.40 abc	3.60 c-f	2.17 bc					
S_1V_1	4.57 ab	3.87 bc	2.80 a					
S_1V_2	3.77 e	3.43 ef	2.10 bc					
S_1V_3	4.03 cde	3.47 def	2.37 bc					
S_1V_4	4.30 bcd	3.67 cde	2.33 bc					
S_1V_5	4.33 a-d	3.40 ef	2.10 bc					
S_2V_1	4.27 bcd	3.73 b-е	2.40 bc					
S_2V_2	3.73 ef	3.27 f	2.10 bc					
S_2V_3	4.30 bcd	3.60 c-f	2.30 bc					
S_2V_4	4.67 ab	4.07 ab	2.30 bc					
S_2V_5	3.30 f	2.90 g	2.03 c					
LSD (0.05)	0.443	0.308	0.313					
Significance level	0.01	0.01	0.05					
CV (%)	6.22	5.11	7.95					

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability.

Healthy and infested plants and infestation status

At flowering stage

Statistically significant variation was recorded in terms of healthy plants, infested plants and plant infestation per m² area at flowering stage due to different levels of salicylic acid (Table 5). The highest number of healthy plants $(31.07/m^2)$ was found from S₂ which was closely followed $(26.53/m^2)$ by S₁, while the lowest number $(24.53/m^2)$ was recorded from S₀. The lowest number

of infested plants $(1.67/m^2)$ was found from S₂ which was statistically similar $(1.87/m^2)$ to S₁, while the highest number $(2.07/m^2)$ was recorded from S₀. The lowest infested plant (5.27%) was found from S₂ which was closely followed (6.73%) by S₁, while the highest infested plant (7.87%) was recorded from S₀. SA played an important role reducing aphid infestation in mustard plants by inducing defense mechanisms of plants. SA activates enzymes those are responsible for antioxidant defense system [27]. Different compounds accumulated for SA have considerable effect on the plants defense against different biotic stresses [28]. Aphid infestation occurs membrane depolarization which is reduced be SA [8]. [29].

Different mustard variety showed statistically significant differences in terms of number of healthy plants infested plants and plant infestation per m² area at flowering stage (Table 5). The highest number of healthy plants ($31.44/m^2$) was recorded from V₅ which was statistically similar ($30.11/m^2$) to V₂, whereas the lowest number of healthy plants ($23.11/m^2$) was found from V₁ which was closely

followed (25.89/m² and 26.33/m²) by V₃ and V₄ and they were statistically similar. The lowest number of infested plants (1.56/m²) was recorded from V₅ which was statistically similar (1.67/m²) to V₂, whereas the highest number of infested plants (2.11/m²) was found from V₁ which was statistically similar (2.00/m²) to V₃ and V₄. The lowest infested plant (4.91%) was recorded from V₅ which was statistically similar (5.36%) to V₂, whereas the highest infested pant (8.49%) was found from V₁ which was closely followed (7.14% and 7.21%) by V₃ and V₄ and they were statistically similar.

 Table 5. Effect of salicylic acid and variety on health, aphid infested plant and plant infestation at flowering stage of mustard

	At flowering stage			
Treatment	Healthy plant	Infested plant	Infestation	
	(No.)	(No.)	(%)	
Levels of salicylic acid				
\mathbf{S}_0	24.53 c	2.07 a	7.87 a	
S_1	26.53 b	1.87 ab	6.73 b	
S_2	31.07 a	1.67 b	5.27 c	
LSD (0.05)	1.180	0.224	0.802	
Significance level	0.01	0.01	0.01	
Different mustard variet	<u>Y</u>			
\mathbf{V}_1	23.11 c	2.11 a	8.49 a	
V_2	30.11 a	1.67 b	5.36 c	
V ₃	25.89 b	2.00 a	7.21 b	
V_4	26.33 b	2.00 a	7.14 b	
V_5	31.44 a	1.56 b	4.91 c	
LSD (0.05)	1.523	0.290	1.035	
Significance level	0.01	0.01	0.01	
CV (%)	5.76	16.11	16.19	

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability.

At fruiting stage

Statistically significant variation was recorded in terms of healthy plants, infested plants and plant infestation per m² area at fruiting stage due to different levels of salicylic acid (Table 6). The highest number of healthy plants (29.87/m²) was found from S₂ which was closely followed (25.73/m²) by S₁, while the lowest number (23.67/m²) was recorded from S₀. The lowest number of infested plants (1.87/m²) was found from S₂ which was found from S₂ which highest number (2.33/m²) was found from S₂. The lowest number of infested plants (2.33/m²) was recorded from S₀. The lowest number was statistically similar (2.13/m²) to S₁, while the highest number (2.33/m²) was recorded from S₀. The lowest infested plant (6.09%) was found from S₂

which was closely followed (7.83%) by S_1 , while the highest infested plant (9.04%) was recorded from S_0 .

Different mustard variety showed statistically significant differences in terms of number of healthy plants, infested plants and plant infestation per m² area at fruiting stage (Table 6). The highest number of healthy plants ($30.44/m^2$) was recorded from V₅ which was statistically similar ($29.44/m^2$) to V₂, whereas the lowest number of healthy plants ($22.11/m^2$) was found from V₁ which was closely followed ($24.78/m^2$ and $25.33/m^2$) by V₃ and V₄ and they were statistically similar. The lowest number of infested plants ($1.67/m^2$) was recorded from V₅

which was statistically similar $(2.00/m^2)$ to V₂, whereas the highest number $(2.33/m^2)$ was found from V₁ which was statistically similar $(2.22/m^2$ and 2.33 m²) to V₃ and V₄. The lowest infested plant (5.41%) was recorded from V₅ which was statistically similar (6.46%) to V_2 , whereas the highest infested pant (9.63%) was found from V_1 which was statistically similar (8.23% and 8.54%) by V_3 and V_4 and they were statistically similar.

Table 6. Effect of	salicylic acid an	d variety on	health, aphi	d infested	plant and	plant infestation	at fruiting
stage of mustard							

	At fruiting stage		
Treatment	Healthy plant	Infested plant	Infestation
	(No.)	(No.)	(%)
Levels of salicylic acid			
\mathbf{S}_0	23.67 c	2.33 a	9.04 a
\mathbf{S}_1	25.73 b	2.13 ab	7.83 b
S_2	29.87 a	1.87 b	6.09 c
LSD (0.05)	1.140	0.345	1.201
Significance level	0.01	0.05	0.01
Different mustard variet	<u>v</u>		
V_1	22.11 c	2.33 a	9.63 a
V_2	29.44 a	2.00 ab	6.46 b
V_3	24.78 b	2.22 a	8.23 a
V_4	25.33 b	2.33 a	8.54 a
V_5	30.44 a	1.67 b	5.41 b
LSD (0.05)	1.471	0.446	1.550
Significance level	0.01	0.05	0.01
CV (%)	5.77	21.85	20.98

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability.

Yield contributing characters and yield of mustard

Plant height at harvest and silique length

Plant height at harvest varied significantly due to different levels of salicylic acid (Table 7). The longest plant (113.79 cm) was recorded from S_2 which was statistically similar (110.02 cm) to S_1 , whereas the shortest plant (103.65 cm) was observed from S_0 . The longest plant (158.58 cm) was found from V_5 which was followed (108.93 cm) by V₄. On the other hand, the shortest plant (87.59 cm) was recorded from V_3 which was statistically similar (93.27 cm and 97.39 cm) by V₂ and V₁ and they were statistically similar. Same result found in both SA and variety for the length of siliqua. The result of exogenous SA application depends of the plant species, developmental stages and doses of SA [30].

Seed yield and stover yield

Aphid infestation causes removal of photoassimilate from the phloem structure of plant which devitalizes the plant completely and drastically damages the crop yield [7]. [8]. Seed yield of mustard varied significantly due to different levels of salicylic acid (Table 7). The highest seed yield (1.85 t/ha) was recorded from S_2 which was followed (1.66 t/ha) by S_1 , whereas the lowest seed yield (1.44 t/ha) was found from S_0 . The highest stover yield (2.86 t/ha) was recorded from S_2 which was followed (2.72 t/ha) by S_1 , whereas the lowest stover yield (2.61 t/ha) was found from S₀. Statistically significant variation was recorded in terms of seed yield for different mustard variety (Table 7). The highest seed yield (2.15 t/ha) was found from V₅ which was statistically similar (2.02 t/ha) to V_2 and closely followed (1.45 t/ha) by V₄, while, the lowest seed yield (1.31 t/ha) was recorded from V₁ which was statistically similar (1.33 t/ha) to V_3 . The highest stover yield (2.97 t/ha) was found from V_5 which was statistically similar (2.85 t/ha and 2.81 t/ha) to V_2 and V_3 , while, the

lowest stover yield (2.32 t/ha) was recorded from V_1 which was followed (2.72 t/ha) by V_4 .

Traatmont	Plant	heigh	tat	Length of siliqua	Seed yield (t/ha)	Stover	yield
Traiment	harvest (cm)			(cm)		(t/ha)	
Levels of salicylic acid							
\mathbf{S}_0	103.65	b		5.35 b	1.44 c	2.61 b	
S_1	110.02	ab		6.08 a	1.66 b	2.72 b	
S_2	113.79	a		6.35 a	1.85 a	2.86 a	
LSD (0.05)	7.372			0.320	0.100	0.140	
Significance level	0.05			0.01	0.01	0.01	
Different mustard variety							
\mathbf{V}_1	97.39 c			4.97 d	1.31 c	2.32 c	
V_2	93.27 c			6.36 ab	2.02 a	2.85 ab	
V_3	87.59 c			5.51 c	1.33 bc	2.81 ab	
V_4	108.93	b		6.15 b	1.45 b	2.72 b	
V_5	158.58	a		6.66 a	2.15 a	2.97 a	
LSD (0.05)	9.517			0.413	0.130	0.181	
Significance level	0.01			0.01	0.01	0.01	
CV (%)	9.03			7.22	8.11	6.83	

Table 7. Effect of sancyfic actu and variety off yield contributing characters and yield of mustard	Table 7.	Effect of salid	ylic acid and	variety on	vield contributing	characters and	yield of mustard
---	----------	-----------------	---------------	------------	--------------------	----------------	------------------

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability.

Conclusion

Salicylic acid is a phenolic compound known as plant hormone that acts in defense mechanism in plant body and response to both biotic and stresses. Different level of SA had considerable effects on the reduction of number of aphid on mustard. SA enhanced the growth and yield of mustard plant. Different varieties also showed different level of aphid infestation separately or in combination of SA. So, from the present observation it can be concluded that the application of salicylic acid enhanced the activity of plant defense mechanism and reduce the number of aphid in several stages of mustard plant. Considering the situation of the present experiment, further studies are needed to conduct advance research on investigation of systemic acquired resistance in mustard with salicylic acid in relation to aphid infestation.

References:

 FAO (Food and Agriculture Organization).
 (2012). Production Year Book. Food and Agriculture Organization of the United Nations, Rome. Italy.

[2] M. Yusuf, Q. Fariduddin, P. Varshney and A. Ahmad, "Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system," Environ. Sci. Pollut. Res. Vol.19, pp. 8–18. 2012. DOI 10.1007/s11356-011-0531-3

[3] P.W. Miles, "Specific responses and damage caused by Aphidoidea", in: Minks A. K. Harrewijn P (eds) Aphids: their biology, natural enemies and control. Elsevier, New York, pp 23–47. 1989.

[4] D. Tegu, J.P. Klingler, A. Moya, J. Simon, "Early progress in aphid genomics and consequences for plant-aphid interactions studies." Mol. Plant Microbe. Interact. Vol. 21. pp. 701–708. 2008.

[5] International Aphid Genomics Consortium Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8: e1000313. 2010.

[6] X. Yu, G. Wang, S. Huang, Y. Ma and L. Xia, "Engineering plants for aphid resistance: current status and future perspectives," Theor. Appl. Genet. Vol. 127. pp. 2065–2083. 2014. DOI 10.1007/s00122-014-2371-2

[7] S.S. Queensberry and X. Ni. "Feeding injury," In: van Emden H, Harrington R, eds. Aphids as crop pests. Wallingford, UK: CAB International, 331–352.2007.

[8] C.H. Foyer, S.R. Verrall, and R.D. Hancock, "Systematic analysis of phloem-feeding insectinduced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects," J. Exp. Botany. Vol. 66, pp. 495–512, 2015. doi:10.1093/jxb/eru491

[9] V. Brault, M. Uzest, B. Monsion, E. Jacquot and S. Blanc, "Aphids as transport devices for plant viruses," Comptes. Rendus. Biologies. Vol. 333, pp. 524–538, 2010.

[10] A. Sugio and S.A. Hogenhout, "The genome biology of phytoplasma: modulators of plants and insects," Curr. Opin. Microbiol. Vol. 15, pp. 247–254, 2012.

[11] D. Kliebenstein, D. Pedersen, B. Barker and T. Mitchell-Olds, "Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana," Genetics, vol. 161, pp. 325–332, 2002.

[12] C. Atri, B. Kumar, H. Kumar, S. Kumar, S. Sharma and S.S. Banga, "Development and

characterization of Brassica juncea–fruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimiKalt)," BMC Genetics, vol. 13, pp. 104, 2012.

[13] F.M. Shakirove, A.R. Skhabutdinova, M.V Bezrukova,, R.A. Fathutdinova and D.R. Fathutdinova, "Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity," Plant Sci. vol. 164, pp. 317-323, 2003.

[14] A.A. Patil, S.M. Maniur, U.G. Nalwadi, "Effect GA₃ and NAA on growth and yield of pulses," South Indian Hort. Vol. 35(5), pp. 393-394, 1987.

[15] K. Dharmender, K.D. Hujar, R. Paliwal and D. Kumar, "Yield and yield attributes of chickpea as influenced by GA_3 and NAA," Crop Res. Hisar, vol. 12(1), pp. 120-122, 1996.

[16] A. Solamani, C. Sivakumar, S. Anbumani, T. Suresh and K. Arumugam, "Role of plant growth regulators on rice production," A review. Agric. Rev. vol. 23, pp. 33-40, 2001.

[17] R.R. Barkosky and F.A. Einhelling, "Effect of salicylic acid on plant water relationship," J. Chem. Ecol. Vol. 19, pp. 237-247, 1993.

[18] M.F.R. Khan, S.G. Pallardy, and R.P. Khan, "Efficacy of insecticides at controlling insect pests of tomato in South Carolina," J. Agric. Urban Entomol. Vol. 16 (3), pp. 165-170, 2003.

[19] M. Arfan, H.R. Athar and M. Ashraf, "Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress," J. Plant. Physiol. Vol. 164, pp. 685-694, 2007.

[20] E. Horvath, G. Szalai, T. Janda, "Induction of abiotic stress tolerance by salicylic acid signaling," J. Plant Growth Regul. vol. 26, pp. 290-300, 2007.

[21] S.M. Kamel, H.M. Mahfouz, H.A. Blal, M. Said,M.F. Mahmoud, "Effects of salicylic acid elicitor and

potassium fertilizer as foliar spray on canola production in the reclaimed land in Ismailia Governorate, Egypt," Cercetari Agronomice Moldova. Vol. 165, pp. 81-89, 2016.

[22] M.A.M. Elhamahmy, M.F. Mahmoud and T.Y. Bayoumi, "The effect of applying exogenous salicylic acid on aphid infection and its influence on histo-physiological traits and thermal imaging of canola," Cercetari Agronomice Moldova Vol. 166, pp. 67-85, 2016.

[23] M. Schneider, P.S chweizer, P. Meuwly and J.P. Métraux., "Systemic acquired resistance in plants," Int. Rev. Cytology. vol. 168, pp. 303-340. 1996.

[24] K.A. Gomez, and A.A. Gomez, "Statistical Procedures for Agricultural Research," 2nd Ed. A. John Wiley Intersci. Pub. p. 130-240, 1984.

[25] A. Metwally, I. Finkemeier, M. Georgi and K.J. Dietz, "Salicylic acid alleviates the cadmium toxicity in barley seedlings," Plant Physiol. Vol. 132(1), pp. 272-281, 2003.

[26] F.L. Goggin, "Divergent defensive pathways in tomato, and their effects on plant-aphid interactions," Comp. Biochem. Phys. Vol. 141, pp. 225-236, 2005. [27] B. Guo, Y.C. Liang, Y.G. Zhu and F.J. Zhao, "Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress," Environ. Poll. Vol. 147, pp. 743– 749, 2007.

[28] G.A. Kiddle, K.J. Doughty and R.M. Wallsgrove., "Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napusL) leaves," J. Exp. Bot. vol. 45(9), pp. 1343-1346, 1994.
[29] A. Koorneef, A. Leon-Reyes, T. Ritsema, A. Verhage, F.C. Den Otter, L.C. Van Loon and C.M.J. Pieterse. "Kinetics of salicylate-mediated suppression of jasmonate signalling reveal a role for redox modulation," Plant Physiol. Vol. 147, pp. 1358–1368, 2008.

[30] M. R. S. Vicente and J. Plasencia, "Salicylic acid beyond defence: its role in plant growth and development," J. Exp. Botany. vol. 62, No. 10, pp. 3321–3338, 2011. doi:10.1093/jxb/err031

[31] Raskin I. L. Role of salicylic acid in plants.Ann. Rev. plant physiol. Plant Mol. Biol. 43:439-463, 1992.