
Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 1, January - 2017

www.jmess.org

JMESSP13420266 1303

A Study on Naive Bayes Text Classification
Algorithm Based on Position Weighting

1Yonghe Lu
School of Information Management

Sun Yat-sen University
Guangzhou, China

luyonghe@mail.sysu.edu.cn

2Jinghuang Chen
School of Information Management

Sun Yat-sen University
Guangzhou, China

3Jianhua Chen
School of Information Management

Sun Yat-sen University
Guangzhou, China

Abstract—The Naive Bayes algorithm in text
classification has the limitation of the
hypothesis: each attribute is independent in the
algorithm. Attribute weighting is an effective
method to improve Naive Bayes algorithm, and
different positions of feature words in a
document have different impacts on text
classification. Therefore, in this paper, we
introduce the position weighting values into
Naive Bayes algorithm and we propose Position-
Bayes algorithm. In order to get a higher text
classification precision, Particle swarm
optimization (PSO) algorithm is used to optimize
the position weighting values. The experimental
results show that compared with Naive Bayes
algorithm, Position-Bayes algorithm has better
performance in the text classification precision in
different dimensions.

Keywords—Naive Bayes algorithm; text
classification; position weighting; particle swarm
optimization algorithm

I. INTRODUCTION

Text classification is the process of automatically
classifying specific text according to its content into
one or more predefined text categories [1]. These
classification algorithms include Naive Bayes, KNN,
Support Vector Machine (SVM), Decision Tree,
Neural Network and so on. Among them, Naive Bayes
algorithm has the advantages of faster classifying and
higher classification precision, and has been mainly
used in spam filtering [2], text classification [3][4],
credit evaluation of financial industry [5][6], face
recognition [7], traffic modeling [8] and other fields.

However, Naive Bayes algorithm is based on the
assumption of “conditional independence”. In fact,
there are correlations among feature attributes.
Therefore, many scholars have improved Naive
Bayes algorithm.

Firstly, improving the methods of feature selection
makes the feature attributes more independent. For
example, Y. Zhang et al. improved Naive Bayes
classification algorithm by merging the related feature
words to make the feature attributes more
independent [9]. Y. Zhang and L. Zhang removed

redundant correlated feature words by using
associated feature algorithm, which improved the
performance of Naive Bayes classification algorithm
[10].

Secondly, improving Naive Bayes classification
algorithm makes it reflect the correlations among the
attributes or weaken the impact of the “conditional
independence” hypothesis on text classification. For
instance, Friedman et al. proposed TAN (Tree
Augmented Naive Bayes) tree-model to make Naive
Bayes contain the dependencies among attributes
[11]. Bai et al. clustered the word clusters according
to the probability distributions of the feature words in
the training set, and then established the ordered
subsequences by calculating the mutual information
among the words and the clusters to improve the
accuracy of Naive Bayes classification algorithm [12].
Lee extracted strongly correlated keywords and
calculated the prior probability of keywords to improve
the performance of Naive Bayes classification
algorithm in the field of text classification [13]. Y. Chen
et al. constructed the three weighting values including
discrimination, representativeness and word
frequency, which improved the Naive Bayes
algorithm, and the experiments on Uyghur corpus
show that the improved algorithm can reach a higher
classification precision [14]. L. Jiang et al. proposed a
new model LWNBTC to reduce the effect of the
attributes dependency on text classification by locally
weighting method [15].

Because the existing methods do not consider the
impacts of the positon of feature attributes in
documents on text classification, we propose a
position-weighted Naive Bayes classification
algorithm, also called “Position-Bayes”, to reduce the
impact of the "conditional independence" hypothesis
of Naive Bayes algorithm, and the position weighting
values of each feature attribute are calculated by
Particle Swarm Optimization (PSO) algorithm. Finally,
our experimental results show that the performance of
Position-Bayes algorithm is better than Naive Bayes
algorithm.

II. POSITION-BAYES ALGORITHM

Generally, the title of a document, the sentence in
the front of a document and the sentence at the end
of a document contain more information about the

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 1, January - 2017

www.jmess.org

JMESSP13420266 1304

document. Some scholars have introduced the
positions of sentences into information extraction and
have improved the performance of information
extraction [16]. Considering the different posteriori
probability density of each category which is caused
by the difference of the position of the feature words
in documents, we propose a position weighting
method to improve the Naive Bayes text classification
algorithm, and the details are as follows.

Let 𝑊 ={ 𝑊1 , 𝑊2 ,…… , 𝑊𝑛 } represent n different

characteristic attributes, n represent the number of

feature dimensions in the text classification, C={𝐶1, 𝐶2,

……, 𝐶𝑚} represent a categories set, m represent the

number of categories, wi represent a specific value of

Wi, and X={𝑤1, 𝑤2,……, 𝑤𝑛} represent an instance of a

document. And the procedures are as follows.

Step 1: Divide the words of an article into k

segments according their positions, and initialize the
weighting value of each segment. The value of k is
based on the specific length of an article or specific
scene. The corpus used in this paper is Reuters
Corpus and we set k as 10. According to (1) and (2),
we divide the words of a document into k segments:

𝑛𝑢𝑚(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝐹 (
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−1

𝑙𝑒𝑛𝑔𝑡ℎ
× 100 𝑘⁄) (1)

𝐹𝑤(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝑝𝑜𝑠[𝑛𝑢𝑚(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)] (2)

Where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 represents the position of the
feature word. For example, if the feature word 𝑡 is the

5th word in the document, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 will be set as 5.
𝑙𝑒𝑛𝑔𝑡ℎ represents the length of the document. In this
paper, we use the number of words to measure the
length of the document. For example, if there are 150
words after word segmentation in the document,
𝑙𝑒𝑛𝑔𝑡ℎ will be set as 150.

And 𝐹() is a rounded down function, such as F
(1.6) = 1, F (0.1) = 0. Equation (1) is used to calculate
the value of segment where the feature word appears
in the document. It can be deduced that when k = 10,
if the feature word appears at the top 10% in the

document, the value of position is 10% of 𝑙𝑒𝑛𝑔𝑡ℎ, so

𝐹(
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−1

𝑙𝑒𝑛𝑔𝑡ℎ
× 100 𝑘⁄) is 0; if position is between top

10% and top 20% (including 20%),

𝐹(
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−1

𝑙𝑒𝑛𝑔𝑡ℎ
× 100 𝑘⁄) is 1; and so on. Therefore, the

values corresponding to 1st segment to 𝑘 th segment
are 0, 1, 2, ..., 𝑘 −1, respectively.

Where 𝑝𝑜𝑠 [] is a k-dimension array containing
position weighting adjusted values in the document
which is divided into 𝑘 segments, and its indices are

from 0 to 𝑘 − 1 . It can be deduced that 𝑝𝑜𝑠 [0]
represents the position weighting adjusted value of

the 1st segment in the document, 𝑝𝑜𝑠[1] represents
the position weighting adjusted value of the 2nd

segment, ..., and 𝑝𝑜𝑠 [k-1] represents the position

weighting adjusted value of the 𝑘th
 segment. And the

values of the array 𝑝𝑜𝑠[] need to be optimized by
Particle Swarm Optimization algorithm.

Step 2: Calculate the adjusted value of position
weighting of each feature word corresponding to each
document. The adjusted value of position weighting of

the feature word 𝑊𝑖 in a document 𝑑𝑘 is calculated

according to (3):

𝐷𝑜𝑐_𝑃𝑤(𝑑𝑘, 𝑊𝑖) = ∑ 𝐹𝑤(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗,𝑖))
𝑚(𝑊𝑖,𝑑𝑘)

𝑗=1
 (3)

Where 𝑚(𝑊𝑖 , 𝑑𝑘) is the frequency of the feature
attribute 𝑊𝑖 appearing in the document 𝑑𝑘 .
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗,𝑖) represents the value of the position

where the feature attribute 𝑊𝑖 appears for the jth time
in the document 𝑑𝑘. For example, the position where
𝑊𝑖 appears for the 2nd time in the document 𝑑𝑘 is 8th,

then 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2,𝑖)= 8.

Step 3: Calculate the adjusted value of position
weighting of each feature attribute in the training set
and the testing set. The adjusted values of position

weighting of feature attribute 𝑊𝑖 in the category 𝐶𝑗 of

the training set and in the testing document X are
calculated respectively as (4) and (5):

𝑇𝑟𝑎𝑖𝑛_𝑃𝑤(𝐶𝑗 , 𝑊𝑖) = ∑ (𝐷𝑜𝑐_𝑃𝑤(𝑑𝑘, 𝑊𝑖))
𝑀(𝑊𝑖,𝐶𝑗)

𝑘=0
 (4)

𝑇𝑒𝑠𝑡_𝑃𝑤(𝑊𝑖)= 𝐷𝑜𝑐_𝑃𝑤(𝑋, 𝑊𝑖) (5)

Where 𝑀(𝑊𝑖 , 𝐶𝑗) is the number of documents with

feature attribute 𝑊𝑖 in the category 𝐶𝑗 of the training

set, and the category of 𝑑𝑘 is 𝐶𝑗 . 𝑇𝑟𝑎𝑖𝑛_𝑃𝑤(𝐶𝑗 , 𝑊𝑖) is

the adjusted value of position weighting of feature
attribute 𝑊𝑖 in the category 𝐶𝑗 of the training set.

𝑇𝑒𝑠𝑡_𝑃𝑤(𝑊𝑖) is the adjusted value of position
weighting of feature attribute 𝑊𝑖 in the test document
X.

Step 4: Add the values of position weighting of
each feature attribute in the training set and the
testing set to the Naive Bayes classification algorithm,
and classify the documents in the testing set. The
classification result of the document X can be
calculated by the improved Naive Bayes classification

algorithm according to (6):

𝐶 ∗=
 𝑎𝑟𝑔 𝑚𝑎𝑥

𝐶𝑗 ∈ 𝐶 (∏ (𝑃(𝑤𝑖|𝐶𝑗) ∗ 𝑃(𝐶𝑗) ∗𝑛
𝑖=1

𝑇𝑟𝑎𝑖𝑛_𝑃𝑤 (𝐶𝑗 , 𝑊𝑖) ∗ 𝑇𝑒𝑠𝑡_𝑃𝑤(𝑊𝑖))) (6)

III. THE OPTIMIZATION OF THE POSITION WEIGHTING

VALUES

In order to find the optimal position weighting
values, we use Particle Swarm Optimization algorithm
to make an iterative calculation, and the details are as
follows.

The velocity of the particle i is denoted as

Vi=(vi1,vi2, … ,viD), the position of the particle i is

denoted as Xi=(xi1,xi2, …,xiD), and the best position
where the particle i has been is denoted as Pi=(pi1,pi2,

…,piD), also called pbest. The best position where all the

particles in the group is denoted as Pg=(pg1,pg2, …,pgD),

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 1, January - 2017

www.jmess.org

JMESSP13420266 1305

also called gbest. All particles have a fitness value
calculated by the fitness function. For the particles of
each generation, the velocity and position of their dth
dimension can be calculated according to (7) and (8):

𝑣𝑖𝑑 = 𝑤 × 𝑣𝑖𝑑 + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ×
𝑅𝑎𝑛𝑑() × (𝑝𝑔𝑑 − 𝑥𝑖𝑑) (7)

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (8)

Where w represents inertia weight, 𝑐1 and 𝑐2 are
acceleration constants, and rand() and Rand() are two
random values which vary from 0 to 1. In this paper,
the number of dimensions of the particles is set as 10,
respectively corresponding to the position weighting
values of 10 segments. For example, the first
dimension of the particle represents the position
weighting value of the feature words in the first
segment (that is 𝑝𝑜𝑠[0]), the second dimension of the
particle represents the position weighting value of the
feature words in the second segment (that is 𝑝𝑜𝑠[1]),

and so on. 𝑐1 and 𝑐2 are set as 2, the number of
particles are set as 30, and the number of algorithmic
iterations is 30.

In this paper, the fitness function is set as the
precision of text classification in order to find the
better position weighting value of each feature word.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠() =
𝑇

𝑁
 (8)

Where T is the number of documents which are
correctly classified in testing set, and N is the number
of all documents contained in testing set.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Environment

The environment of the experiment is Win7 64x
4GB Memory. And the text classification platform
used in the experiment is based on the development
of Java and environment of Eclipse, which integrates
all the processes and common algorithms about text
classification [17]. In this paper, Position-Bayes
algorithm is compared with the Naive Bayes algorithm
in the same experimental environment except for the
classification algorithm by using control variate
method.

B. Experimental Procedures

The corpus used in this paper is Reuters-21578
Corpus, and we select eight categories for text
classification. They are acq, crude, earn, grain,
interest, money-fx, ship and trade. The corpus is
divided into testing set and training set according to
the ratio of 1 to 2, and the detail distribution of the
number of documents in each category is shown in
Table I.

TABLE I. THE CATEGORIES DISTRIBUTION OF REUTERS-21578 CORPUS

Category Training set Testing set

acq 1596 696

crude 253 121

earn 2840 1083

grain 41 10

interest 190 81

money-fx 206 87

ship 108 36

trade 251 75

Total 5481 2189

The experimental procedures are as follows.

Step 1: Word segmentation. The word
segmentation module used in the experiment is
ICTCLAS2013 developed by Chinese Academy of
Sciences. The indexing module is Lucence.

Step 2: Feature selection. In this paper, chi-square
test feature selection algorithm is used in the
experiment. The number of dimensions are initialized
as 100, and then the number of dimensions of each
experiment is increased by 100 on the previous
experiment until the precision drops.

Step 3: Feature weighting calculation. The method
TF-IDF is used to calculate the feature weighting
values in the experiment.

Step 4: Text classification. We use Position-Bayes
algorithm and Naive Bayes algorithm respectively to
classify the documents and calculate the classification
precision.

C. Results and Analysis

Under the condition of the optimal position
weighting values, the precisions of text classification
in different dimensions are shown in Table II. As the
number of dimensions increases, the trend of
classification precisions of Position-Bayes is similar to
that of Naive Bayes which is shown in Fig. 1. From
100 dimensions, as the number of dimensions
increases, the classification precision also increases,
and the precision reaches the highest when the
number of dimensions is 600. After 600 dimensions,
the feature words begin to be redundant, so the
classification precision begins to drop. And from Fig.
1 and Fig. 2, we can see that the precision of
Position-Bayes are higher than that of Naive Bayes
from 100 to 800 dimensions.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 1, January - 2017

www.jmess.org

JMESSP13420266 1306

TABLE II. THE CLASSIFICATION PRECISIONS OF TWO ALGORITHMS IN

DIFFERENT DIMENSIONS

Dimensions

Precision(%)

Naive
Bayes

Position-
Bayes

100 71.02 73.41

200 77.57 78.35

300 81.22 83.23

400 90.82 92.33

500 91.73 92.92

600 92.10 93.33

700 83.23 84.42

800 83.28 83.33

Average 83.88 85.17

Fig. 1. The trend of classification precision with the
increasing of dimensions

Fig. 2. The comparison of the precisions of Position-Bayes
and Naive Bayes

Then we use paired sample t-test for the above
results by SPSS in order to test whether it is
statistically significant or not. The confidence level is
set as 0.95 and the results are as follows.

TABLE III. PAIRED SAMPLE T-TEST RESULTS OF THE PRECISIONS OF

TWO ALGORITHMS

 t df
Sig. (two-

sided)

Native- Bayes —

Position-Bayes
-5.167 7 0.001

According to the Table III, the value of Sig. is
0.001 which is less than 0.05, so the experimental
results are statistically significant. Therefore, the
classification precisions of Position-Bayes are
significantly different from those of Naive Bayes, and
the performance of Position-Bayes is better than that
of Naive Bayes.

After the optimization of PSO, when the
classification precision is the highest, the position
weighting value of each segment are shown in Table
IV and Table V. In order to make the data be a unified
comparison, all the values are processed by the

function (9).

𝑓(𝑥) = 𝑥/𝑚𝑎𝑥 (9)

Where 𝑥 is the position weighting value of each
segment and 𝑚𝑎𝑥 is the maximum value among all
the position weighting values in the same dimensions.
Processed by the function, all the values are in the
range of 0 to 1. The segment 1 represents the top
10% of the document, the segment 2 represents the
top 10% to 20% of the document, and so on. In
different dimensions, the position weighting values of
the front and the latter segment are relatively stable.
The position weighting values of the 1st and the 2nd
segment are relatively bigger, the values of the 9th
and the 10th segment are relatively smaller, and the
fluctuation of the position weighting values of segment
3rd to segment 8th is relatively larger.

TABLE IV. THE POSITION WEIGHTING VALUES OF SEGMENT 1
TO 5 IN

DIFFERENT DIMENSIONS

Segments

Dimensions
1 2 3 4 5

100 1 1 1 0.804 0.462

200 0.985 1 0.322 0.466 0.536

300 1 1 0.659 1.00 0.447

400 1 0.849 0.553 0.504 0.872

500 1 1 0.46 0.582 0.718

600 1 1 0.632 0.779 0.837

700 1 1 0.459 0.663 0.321

800 1 1 1 1 1

Average 1.00 0.98 0.64 0.72 0.65

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 1, January - 2017

www.jmess.org

JMESSP13420266 1307

TABLE V. THE POSITION WEIGHTING VALUES OF SEGMENT 6 TO 10 IN

DIFFERENT DIMENSIONS

Segments

Dimensions
6 7 8 9 10

100 0.297 0.411 0.129 0.507 0.391

200 0.386 0.841 0.861 0.257 0.577

300 0.58 1.00 0.211 0.305 0.494

400 0.205 0.464 0.239 0.421 0.32

500 0.382 0.707 0.303 0.16 0.476

600 0.46 0.607 0.291 0.352 0.281

700 0.344 0.448 0.897 0.276 0.247

800 1 1 1 0.404 0.543

Average 0.48 0.68 0.49 0.34 0.42

The classification precisions of 400, 500 and 600
dimensions are relatively higher and more stable, so
we can observe further the position weighting values
of 400, 500 and 600 dimensions, and the trends of the
values are shown in Figure 3. Under the condition of
400, 500 and 600 dimensions, the fluctuation trends
are similar and the position weighting values of the
same segment are close to each other. As the
position of segment becomes close to the end, the
position weighting values become a downward trend.
So, it can be concluded that the feature words in the
top 20% of the document are more representative and
contain more important information of the document,
and they need to be assigned the higher weighting
values.

Fig. 3. The trend of the position weighting values in the
dimensions of 400, 500, and 600

V. CONCLUSIONS

Naive Bayes algorithm is a commonly used and
has a good performance of text classification. In this
paper, we propose a position-weighted Naive Bayes
classification algorithm to reduce the impact of the
"conditional independence" hypothesis of Naive
Bayes algorithm, and use PSO algorithm to find the
optimal position weighting values of each segment.
According to the experimental results, it can be

concluded that compared with Naive Bayes algorithm,
the improved Position-Bayes algorithm can do better
in text classification and improve the precision of text
classification. What’s more, it can be deduced that the
feature words in the top 20% of the document are
more representative and contain more important
information of the document, and they need to be
assigned the higher weighting values, which can
improve the precision of text classification.

ACKNOWLEDGMENT

This research is supported by National Natural
Science Foundation of China (Grant No. 71373291),
and Science and Technology Planning Project of
Guangdong Province, China (Grant No.
2016B030303003).

REFERENCES

[1] Y. Yang, X. Liu. A re-examination of text
categorization methods. International ACM SIGIR
Conference on Research and Development in
Information Retrieval. ACM, pp. 42-49, 1999.

[2] X. Shi, Y. Lin, Z. Chen. Mail Filtering Based
on the Risk Minimization Bayes. Computer
Science, vol. 29, no. 8, 50-51. 2002.

[3] M. M. Drugan, M. A. Wiering. Feature
selection for bayesian network classifiers using the
mdl-fs score. International Journal of Approximate
Reasoning, vol. 51, no. 6, pp. 695-717, 2010.

[4] X. Zhou. Text classification model of uyghur
based on improved bayes. Journal of Computational
Information Systems, vol. 9, no. 11, 4319-4327, 2013.

[5] X. Li, C. Guo, K. Chen. Bayesian network
consumer credit scoring models based on minimum
overall risk rule. Application Research of Computers,
vol. 26, no. 1, pp. 50-53, 2009.

[6] X. Wang. Study of Bayesian Network
Classification Models and Its Application in Credit
Scoring. Computer & Digital Engineering, vol. 38, no.
8, pp. 107-109, 2010.

[7] Y. Zeng, D. Feng, D. Fu. Face recognition
algorithm of binary image by smallest risk Bayesian
method. Computer Engineering and Design, vol. 32,
no. 10, pp. 3511-3513, 2011.

[8] D. Wu, P. Chen. Bayesian minimum hazard
control model of traffic accident. Journal of Traffic
and Transportation Engineering, vol. 7, no. 6, pp.
266, 2007.

[9] Y. Zhang, J. Chen, Z. Xiong. Improved Naive
Bayes Text Classification Algorithm. Journal of
Guangxi Normal University : Natural Science Edition,
vol. 25, no. 2, pp. 206-209, 2007.

[10] Y. Zhang, L. Zhang, J. Yan. Naive Bayes
Text Classifier Based on Association Features.
Journal of North western Polytechnical University,
vol. 22, no. 4, pp. 413-416, 2004.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 3 Issue 1, January - 2017

www.jmess.org

JMESSP13420266 1308

[11] N. Friedman, G. Dan, M. Goldszmidt.
Bayesian network classifiers. Machine Learning, vol.

29, no. 2, pp. 131-163, 1997.

[12] L. Bai, H. Huang, S. Liu, Q. Yan. Naive
Bayes Classifier Based on Bootstrap Average.
Computer Engineering, vol.33, no. 15, pp. 190-192,
2007.

[13] L. H. Lee, D. Isa, W. O. Choo, W. Y. Chue.
High relevance keyword extraction facility for
bayesian text classification on different domains of
varying characteristic. Expert Systems with
Applications, vol.39, no. 1, pp. 1147-1155, 2012.

[14] Y. Chen, A. Halidan, D. Yiliyaer, A. Yaliqin.
Uyghur text classification based on weighted

improved Bayes. COMPUTER ENGINEERING AND
DESIGN, vol. 35, no. 6, pp. 1999-2003, 2014.

[15] L. Jiang, Z. Cai, H. Zhang, D. Wang. Naive
Bayes text classifiers: a locally weighted learning
approach. Journal of Experimental & Theoretical
Artificial Intelligence, vol. 25, no. 2, pp. 273-286, 2013.

[16] J. Liu, Y. Tan, J. Li, N. Yuan. Automatic
Extraction Method of Chinese Text Theme Based on
Multi-Factor. COM PUTER TECHNOLOGY AND
DEVELOPMENT, vol. 20, no. 7, pp. 72-75, 2010.

[17] Y. Lu, Y. Peng, W. Liu, Building a Text
Classification Platform for Scientific Research and
Teaching. Journal of Modern Information, vol. 35, no.
9, pp. 56-62, 2015.

http://www.jmess.org/

