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Abstract—The Naive Bayes algorithm in text 
classification has the limitation of the 
hypothesis: each attribute is independent in the 
algorithm. Attribute weighting is an effective 
method to improve Naive Bayes algorithm, and 
different positions of feature words in a 
document have different impacts on text 
classification. Therefore, in this paper, we 
introduce the position weighting values into 
Naive Bayes algorithm and we propose Position-
Bayes algorithm. In order to get a higher text 
classification precision, Particle swarm 
optimization (PSO) algorithm is used to optimize 
the position weighting values. The experimental 
results show that compared with Naive Bayes 
algorithm, Position-Bayes algorithm has better 
performance in the text classification precision in 
different dimensions. 

Keywords—Naive Bayes algorithm; text 
classification; position weighting; particle swarm 
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I.  INTRODUCTION  

Text classification is the process of automatically 
classifying specific text according to its content into 
one or more predefined text categories [1]. These 
classification algorithms include Naive Bayes, KNN, 
Support Vector Machine (SVM), Decision Tree, 
Neural Network and so on. Among them, Naive Bayes 
algorithm has the advantages of faster classifying and 
higher classification precision, and has been mainly 
used in spam filtering [2], text classification [3][4], 
credit evaluation of financial industry [5][6], face 
recognition [7], traffic modeling [8] and other fields. 

However, Naive Bayes algorithm is based on the 
assumption of “conditional independence”. In fact, 
there are correlations among feature attributes. 
Therefore, many scholars have improved Naive 
Bayes algorithm. 

Firstly, improving the methods of feature selection 
makes the feature attributes more independent. For 
example, Y. Zhang et al. improved Naive Bayes 
classification algorithm by merging the related feature 
words to make the feature attributes more 
independent [9]. Y. Zhang and L. Zhang removed 

redundant correlated feature words by using 
associated feature algorithm, which improved the 
performance of Naive Bayes classification algorithm 
[10]. 

Secondly, improving Naive Bayes classification 
algorithm makes it reflect the correlations among the 
attributes or weaken the impact of the “conditional 
independence” hypothesis on text classification. For 
instance, Friedman et al. proposed TAN (Tree 
Augmented Naive Bayes) tree-model to make Naive 
Bayes contain the dependencies among attributes 
[11]. Bai et al. clustered the word clusters according 
to the probability distributions of the feature words in 
the training set, and then established the ordered 
subsequences by calculating the mutual information 
among the words and the clusters to improve the 
accuracy of Naive Bayes classification algorithm [12]. 
Lee extracted strongly correlated keywords and 
calculated the prior probability of keywords to improve 
the performance of Naive Bayes classification 
algorithm in the field of text classification [13]. Y. Chen 
et al. constructed the three weighting values including  
discrimination, representativeness and word 
frequency, which improved the Naive Bayes 
algorithm, and the experiments on Uyghur corpus 
show that the improved algorithm can reach a higher 
classification precision [14]. L. Jiang et al. proposed a 
new model LWNBTC to reduce the effect of the 
attributes dependency on text classification by locally 
weighting method [15]. 

Because the existing methods do not consider the 
impacts of the positon of feature attributes in 
documents on text classification, we propose a 
position-weighted Naive Bayes classification 
algorithm, also called “Position-Bayes”, to reduce the 
impact of the "conditional independence" hypothesis 
of Naive Bayes algorithm, and the position weighting 
values of each feature attribute are calculated by 
Particle Swarm Optimization (PSO) algorithm. Finally, 
our experimental results show that the performance of 
Position-Bayes algorithm is better than Naive Bayes 
algorithm. 

II. POSITION-BAYES ALGORITHM 

Generally, the title of a document, the sentence in 
the front of a document and the sentence at the end 
of a document contain more information about the 
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document. Some scholars have introduced the 
positions of sentences into information extraction and 
have improved the performance of information 
extraction [16]. Considering the different posteriori 
probability density of each category which is caused 
by the difference of the position of the feature words 
in documents, we propose a position weighting 
method to improve the Naive Bayes text classification 
algorithm, and the details are as follows. 

Let 𝑊 ={ 𝑊1 ,  𝑊2 ,…… ,  𝑊𝑛 } represent n different 

characteristic attributes, n represent the number of 

feature dimensions in the text classification, C={𝐶1, 𝐶2,

……, 𝐶𝑚}  represent a categories set, m represent the 

number of categories, wi represent a specific value of 

Wi, and X={𝑤1, 𝑤2,……, 𝑤𝑛} represent an instance of a 

document. And the procedures are as follows. 

Step 1: Divide the words of an article into k 

segments according their positions, and initialize the 
weighting value of each segment. The value of k is 
based on the specific length of an article or specific 
scene. The corpus used in this paper is Reuters 
Corpus and we set k as 10. According to (1) and (2), 
we divide the words of a document into k segments: 

𝑛𝑢𝑚(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝐹 (
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−1

𝑙𝑒𝑛𝑔𝑡ℎ
× 100 𝑘⁄ )  (1) 

𝐹𝑤(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝑝𝑜𝑠[𝑛𝑢𝑚(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)] (2) 

Where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  represents the position of the 
feature word. For example, if the feature word 𝑡 is the 

5th word in the document, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 will be set as 5. 
𝑙𝑒𝑛𝑔𝑡ℎ represents the length of the document. In this 
paper, we use the number of words to measure the 
length of the document. For example, if there are 150 
words after word segmentation in the document, 
𝑙𝑒𝑛𝑔𝑡ℎ will be set as 150. 

And 𝐹( ) is a rounded down function, such as F 
(1.6) = 1, F (0.1) = 0. Equation (1) is used to calculate 
the value of segment where the feature word appears 
in the document. It can be deduced that when k = 10, 
if the feature word appears at the top 10% in the 

document, the value of position is 10% of 𝑙𝑒𝑛𝑔𝑡ℎ, so 

𝐹(
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−1

𝑙𝑒𝑛𝑔𝑡ℎ
× 100 𝑘⁄ ) is 0; if position is between top 

10% and top 20% (including 20%), 

𝐹(
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛−1

𝑙𝑒𝑛𝑔𝑡ℎ
× 100 𝑘⁄ ) is 1; and so on. Therefore, the 

values corresponding to 1st segment to 𝑘 th segment 
are 0, 1, 2, ..., 𝑘 −1, respectively. 

Where 𝑝𝑜𝑠 [ ] is a k-dimension array containing 
position weighting adjusted values in the document 
which is divided into 𝑘 segments, and its indices are 

from 0 to 𝑘 − 1 . It can be deduced that 𝑝𝑜𝑠 [0] 
represents the position weighting adjusted value of 

the 1st segment in the document, 𝑝𝑜𝑠[1] represents 
the position weighting adjusted value of the 2nd 

segment, ..., and 𝑝𝑜𝑠 [k-1] represents the position 

weighting adjusted value of the 𝑘th
 segment. And the 

values of the array 𝑝𝑜𝑠[ ] need to be optimized by 
Particle Swarm Optimization algorithm. 

Step 2: Calculate the adjusted value of position 
weighting of each feature word corresponding to each 
document. The adjusted value of position weighting of 

the feature word 𝑊𝑖   in a document 𝑑𝑘  is calculated 

according to (3): 

𝐷𝑜𝑐_𝑃𝑤(𝑑𝑘, 𝑊𝑖) = ∑ 𝐹𝑤(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗,𝑖))
𝑚(𝑊𝑖,𝑑𝑘)

𝑗=1
 (3) 

Where 𝑚(𝑊𝑖 , 𝑑𝑘)  is the frequency of the feature 
attribute 𝑊𝑖  appearing in the document 𝑑𝑘 . 
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗,𝑖)  represents the value of the position 

where the feature attribute 𝑊𝑖 appears for the jth time 
in the document 𝑑𝑘. For example, the position where 
𝑊𝑖 appears for the 2nd time in the document 𝑑𝑘 is 8th, 

then 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2,𝑖)= 8. 

Step 3: Calculate the adjusted value of position 
weighting of each feature attribute in the training set 
and the testing set. The adjusted values of position 

weighting of feature attribute 𝑊𝑖  in the category 𝐶𝑗 of 

the training set and in the testing document X are 
calculated respectively as (4) and (5): 

𝑇𝑟𝑎𝑖𝑛_𝑃𝑤(𝐶𝑗 , 𝑊𝑖) = ∑ (𝐷𝑜𝑐_𝑃𝑤(𝑑𝑘, 𝑊𝑖))
𝑀(𝑊𝑖,𝐶𝑗)

𝑘=0
 (4) 

𝑇𝑒𝑠𝑡_𝑃𝑤(𝑊𝑖)= 𝐷𝑜𝑐_𝑃𝑤(𝑋, 𝑊𝑖) (5) 

Where 𝑀(𝑊𝑖 , 𝐶𝑗) is the number of documents with 

feature attribute 𝑊𝑖  in the category 𝐶𝑗  of the training 

set, and the category of 𝑑𝑘 is 𝐶𝑗 . 𝑇𝑟𝑎𝑖𝑛_𝑃𝑤(𝐶𝑗 , 𝑊𝑖) is 

the adjusted value of position weighting of feature 
attribute 𝑊𝑖  in the category 𝐶𝑗  of the training set. 

𝑇𝑒𝑠𝑡_𝑃𝑤(𝑊𝑖)  is the adjusted value of position 
weighting of feature attribute 𝑊𝑖 in the test document 
X.  

Step 4: Add the values of position weighting of 
each feature attribute in the training set and the 
testing set to the Naive Bayes classification algorithm, 
and classify the documents in the testing set. The 
classification result of the document X can be 
calculated by the improved Naive Bayes classification 

algorithm according to (6): 

𝐶 ∗=
 𝑎𝑟𝑔 𝑚𝑎𝑥

𝐶𝑗 ∈ 𝐶 (∏ (𝑃(𝑤𝑖|𝐶𝑗) ∗ 𝑃(𝐶𝑗) ∗𝑛
𝑖=1

𝑇𝑟𝑎𝑖𝑛_𝑃𝑤 (𝐶𝑗 , 𝑊𝑖) ∗ 𝑇𝑒𝑠𝑡_𝑃𝑤(𝑊𝑖)))  (6) 

III. THE OPTIMIZATION OF THE POSITION WEIGHTING 

VALUES 

In order to find the optimal position weighting 
values, we use Particle Swarm Optimization algorithm 
to make an iterative calculation, and the details are as 
follows. 

The velocity of the particle i is denoted as 

Vi=(vi1,vi2, … ,viD), the position of the particle i is 

denoted as Xi=(xi1,xi2, …,xiD), and the best position 
where the particle i has been is denoted as Pi=(pi1,pi2, 

…,piD), also called pbest. The best position where all the 

particles in the group is denoted as Pg=( pg1,pg2, …,pgD), 
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also called gbest. All particles have a fitness value 
calculated by the fitness function. For the particles of 
each generation, the velocity and position of their dth 
dimension can be calculated according to (7) and (8): 

𝑣𝑖𝑑 = 𝑤 × 𝑣𝑖𝑑 + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ×
𝑅𝑎𝑛𝑑() × (𝑝𝑔𝑑 − 𝑥𝑖𝑑) (7) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (8) 

Where w represents inertia weight, 𝑐1  and 𝑐2  are 
acceleration constants, and rand() and Rand() are two 
random values which vary from 0 to 1. In this paper, 
the number of dimensions of the particles is set as 10, 
respectively corresponding to the position weighting 
values of 10 segments. For example, the first 
dimension of the particle represents the position 
weighting value of the feature words in the first 
segment (that is 𝑝𝑜𝑠[0]), the second dimension of the 
particle represents the position weighting value of the 
feature words in the second segment (that is 𝑝𝑜𝑠[1]), 

and so on. 𝑐1  and 𝑐2  are set as 2, the number of 
particles are set as 30, and the number of algorithmic 
iterations is 30. 

In this paper, the fitness function is set as the 
precision of text classification in order to find the 
better position weighting value of each feature word. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠()  =
𝑇

𝑁
  (8) 

Where T is the number of documents which are 
correctly classified in testing set, and N is the number 
of all documents contained in testing set. 

IV. EXPERIMENTS AND ANALYSIS 

A. Experimental Environment 

The environment of the experiment is Win7 64x 
4GB Memory. And the text classification platform 
used in the experiment is based on the development 
of Java and environment of Eclipse, which integrates 
all the processes and common algorithms about text 
classification [17]. In this paper, Position-Bayes 
algorithm is compared with the Naive Bayes algorithm 
in the same experimental environment except for the 
classification algorithm by using control variate 
method. 

B. Experimental Procedures 

The corpus used in this paper is Reuters-21578 
Corpus, and we select eight categories for text 
classification. They are acq, crude, earn, grain, 
interest, money-fx, ship and trade. The corpus is 
divided into testing set and training set according to 
the ratio of 1 to 2, and the detail distribution of the 
number of documents in each category is shown in 
Table I. 

 

 

 

 

 

TABLE I.  THE CATEGORIES DISTRIBUTION OF REUTERS-21578 CORPUS 

Category Training set Testing set 

acq 1596 696 

crude 253 121 

earn 2840 1083 

grain 41 10 

interest 190 81 

money-fx 206 87 

ship 108 36 

trade 251 75 

Total 5481 2189 

The experimental procedures are as follows. 

Step 1: Word segmentation. The word 
segmentation module used in the experiment is 
ICTCLAS2013 developed by Chinese Academy of 
Sciences. The indexing module is Lucence. 

Step 2: Feature selection. In this paper, chi-square 
test feature selection algorithm is used in the 
experiment. The number of dimensions are initialized 
as 100, and then the number of dimensions of each 
experiment is increased by 100 on the previous 
experiment until the precision drops. 

Step 3: Feature weighting calculation. The method 
TF-IDF is used to calculate the feature weighting 
values in the experiment. 

Step 4: Text classification. We use Position-Bayes 
algorithm and Naive Bayes algorithm respectively to 
classify the documents and calculate the classification 
precision. 

C. Results and Analysis 

Under the condition of the optimal position 
weighting values, the precisions of text classification 
in different dimensions are shown in Table II. As the 
number of dimensions increases, the trend of 
classification precisions of Position-Bayes is similar to 
that of Naive Bayes which is shown in Fig. 1. From 
100 dimensions, as the number of dimensions 
increases, the classification precision also increases, 
and the precision reaches the highest when the 
number of dimensions is 600. After 600 dimensions, 
the feature words begin to be redundant, so the 
classification precision begins to drop. And  from Fig. 
1 and Fig. 2, we can see that the precision of 
Position-Bayes are higher than that of Naive Bayes 
from 100 to 800 dimensions.  
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TABLE II.  THE CLASSIFICATION PRECISIONS OF TWO ALGORITHMS IN 

DIFFERENT DIMENSIONS 

Dimensions 

Precision(%) 

Naive 
Bayes 

Position-
Bayes 

100 71.02 73.41 

200 77.57 78.35 

300 81.22 83.23 

400 90.82 92.33 

500 91.73 92.92 

600 92.10 93.33 

700 83.23 84.42 

800 83.28 83.33 

Average 83.88 85.17 

 

Fig. 1. The trend of classification precision with the 
increasing of dimensions 

 

Fig. 2. The comparison of the precisions of Position-Bayes 
and Naive Bayes 

Then we use paired sample t-test for the above 
results by SPSS in order to test whether it is 
statistically significant or not. The confidence level is 
set as 0.95 and the results are as follows. 

TABLE III.   PAIRED SAMPLE T-TEST  RESULTS OF THE PRECISIONS OF 

TWO ALGORITHMS 

 t df 
Sig. (two-

sided) 

Native- Bayes — 

Position-Bayes 
-5.167 7 0.001 

According to the Table III, the value of Sig. is 
0.001 which is less than 0.05, so the experimental 
results are statistically significant. Therefore, the 
classification precisions of Position-Bayes are 
significantly different from those of Naive Bayes, and 
the performance of Position-Bayes is better than that 
of Naive Bayes. 

After the optimization of PSO, when the 
classification precision is the highest, the position 
weighting value of each segment are shown in Table 
IV and Table V. In order to make the data be a unified 
comparison, all the values are processed by the 

function (9). 

𝑓(𝑥) = 𝑥/𝑚𝑎𝑥  (9) 

Where 𝑥  is the position weighting value of each 
segment and 𝑚𝑎𝑥 is the maximum value among all 
the position weighting values in the same dimensions. 
Processed by the function, all the values are in the 
range of 0 to 1. The segment 1 represents the top 
10% of the document, the segment 2 represents the 
top 10% to 20% of the document, and so on. In 
different dimensions, the position weighting values of 
the front and the latter segment are relatively stable. 
The position weighting values of the 1st and the 2nd  
segment are relatively bigger, the values of the 9th  
and the 10th  segment are relatively smaller, and the 
fluctuation of the position weighting values of segment 
3rd  to segment 8th  is relatively larger. 

TABLE IV.  THE POSITION WEIGHTING VALUES OF SEGMENT 1 
TO 5 IN 

DIFFERENT DIMENSIONS 

Segments 
 

Dimensions 
1 2 3 4 5 

100 1 1 1 0.804 0.462 

200 0.985 1 0.322 0.466 0.536 

300 1 1 0.659 1.00 0.447 

400 1 0.849 0.553 0.504 0.872 

500 1 1 0.46 0.582 0.718 

600 1 1 0.632 0.779 0.837 

700 1 1 0.459 0.663 0.321 

800 1 1 1 1 1 

Average 1.00 0.98 0.64 0.72 0.65 
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TABLE V.  THE POSITION WEIGHTING VALUES OF SEGMENT 6 TO 10 IN 

DIFFERENT DIMENSIONS 

Segments 
 

Dimensions 
6 7 8 9 10 

100 0.297 0.411 0.129 0.507 0.391 

200 0.386 0.841 0.861 0.257 0.577 

300 0.58 1.00 0.211 0.305 0.494 

400 0.205 0.464 0.239 0.421 0.32 

500 0.382 0.707 0.303 0.16 0.476 

600 0.46 0.607 0.291 0.352 0.281 

700 0.344 0.448 0.897 0.276 0.247 

800 1 1 1 0.404 0.543 

Average 0.48 0.68 0.49 0.34 0.42 

 

The classification precisions of 400, 500 and 600 
dimensions are relatively higher and more stable, so 
we can observe further the position weighting values 
of 400, 500 and 600 dimensions, and the trends of the 
values are shown in Figure 3. Under the condition of 
400, 500 and 600 dimensions, the fluctuation trends 
are similar and the position weighting values of the 
same segment are close to each other. As the 
position of segment becomes close to the end, the 
position weighting values become a downward trend. 
So, it can be concluded that the feature words in the 
top 20% of the document are more representative and 
contain more important information of the document, 
and they need to be assigned the higher weighting 
values. 

 

Fig. 3. The trend of the position weighting values in the 
dimensions of 400, 500, and 600 

V. CONCLUSIONS 

Naive Bayes algorithm is a commonly used and 
has a good performance of text classification. In this 
paper, we propose a position-weighted Naive Bayes 
classification algorithm to reduce the impact of the 
"conditional independence" hypothesis of Naive 
Bayes algorithm, and use PSO algorithm to find the 
optimal position weighting values of each segment. 
According to the experimental results, it can be 

concluded that compared with Naive Bayes algorithm, 
the improved Position-Bayes algorithm can do better 
in text classification and improve the precision of text 
classification. What’s more, it can be deduced that the 
feature words in the top 20% of the document are 
more representative and contain more important 
information of the document, and they need to be 
assigned the higher weighting values, which can 
improve the precision of text classification. 
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