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Abstract—In transmitting digital information, the 
Modulator-Demodulators (Modems) and the Digital 
Communication Systems, in general, depend on 
equalizers in order to eliminate or minimize inter 
symbol interference. Equalizers used in practice 
require a training signal that is known to the 
receiver to initialize a communication system so 
that it can eliminate the inter symbol interference. 
Here, a new approach for eliminating the need for 
a training signal in initializing a modem or a 
communication system is introduced based on 
the fractional sampling. Unlike the existing block 
processing equalizers based on fractional 
sampling, the proposed equalizer is data adaptive. 
It is a fast learning Blind Adaptive Equalizer that 
does not require a training signal; a self learning 
algorithm. The Blind Adaptive Equalizer is capable 
of estimating the channel parameters and the 
transmitted symbols adaptively irrespective of the 
phase properties of the channel. The learning 
characteristic of the Blind Adaptive Equalizer is 
independent of the signal to noise ratio (snr) at 
high snr. The fast decaying characteristic of the 
learning curves indicates its fast learning 
capability. At higher signal to noise ratios, the 
variance of the channel parameter estimates of 
the Blind Adaptive Equalizer is negligibly small. In 
addition, the Blind Adaptive Equalizer achieves 
zero probability of error at high signal to noise 
ratios. It can also be used in signal interception 
due to its blind adaptive nature. 
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I. INTRODUCTION 

All the practical communication channels are band 
limited. When a channel is band limited in frequency 
domain, its resulting impulse response in time domain 
will be unbounded. This causes a transmitted symbol 
to be spread out into the adjacent symbols causing 
inter symbol interference. When the signal is received 
at the receiver, its first task before any attempt to 
estimate the symbols, would be to eliminate or 
minimize the effect of the channel from the received 
signal so that the inter symbol interference will be 
eliminated or minimized. In order to do that, it is 
necessary to estimate the channel before start 
receiving the information. In general, digital 

communication system starts transmitting a signal 
known to the receiver so that the receiver can 
estimate the channel and eliminate the effect of the 
channel; the device achieve this process is known as 
a equalizer. Equalizers can be block processors 
where the block of received known signal is used to 
estimate the channel, or they can be data adaptive 
where parameters of the equalizer are updated based 
on each data point. Adaptive equalizers are able to 
respond to changing channel environments. 

In order to avoid the use of a training signal, a 
fractional sampling based block processing equalizer 
was proposed in [1].  In fractional sampling, a symbol 
is oversampled M times to convert signal channel into 
a M-multichannel system. If the regular sampling rate 
is fs then, the fractional sampling is achieved by 
sampling at Mfs. Then, the cross correlation 
characteristic of the multichannel outputs are used to 
estimate the channel parameters based on the 
generalized eigenvalue-eigenvector decomposition. 
This eliminates the need for a training signal. It was 
also assumed the channel to be cyclo-stationary. In 
spite of it good performance characteristic, it hasn’t 
been practical due to it block processing nature. Now, 
the question is how we can use the cross correlation 
characteristics of the multichannel outputs to design 
an adaptive equalizer? If we can answer this question, 
we will have a Blind Adaptive Equalizer.  

 

II. SIGNAL MODEL 

We start with multi-channel signal model of a 
communication system obtained by using fractional 
sampling. Let us assume that we sample the signal 
x(t), the received baseband signal, M times the 
symbol rate. Here, M is arbitrary and has to be greater 
than the order of the channel, L. Both the order of the 
channel, L and the rate of fractional sampling M are 
unknown. We present a methodology for determining 
proper L and M later. 

When we sample the signal x(t), the received 
baseband signal, M times the symbol rate, each 
symbol interval contains M samples. Let the mth 
sample of the nth received symbol be denoted by, 

 
 xm(n), m=1, 2, ...,M, n=1, 2, ...,  
 
n denotes the symbol identifier, and m denotes the 

fractional sampling identifier in a symbol. 
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Single to multi-channel model can be illustrated as 
follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x(t) is the received baseband signal, t denotes time, 
y(n) is a vector containing M samples of nth symbol, 
 
y(n)=[x1(n), x2(n), ..., xM(n)]T, 
 
fs is the symbol frequency, 
s(n) is the transmitted nth symbol, 
 
hm=[hm(0), hm(1), ..., hm(L-1)]T,  
 
m denotes the mth channel, m=1, 2, ... M, 
M=the rate of fractional sampling or the number of 
samples per symbol, M also denotes the number of 
channels in the multi-channel model, 
L=the maximum of the order of the channels, [.]T 
denotes the vector or matrix transpose. 

If the input symbol sequence is s(n), n=1, 2, ..., we 
can write xm(n) as, 

 
 
 
 
 
 
  
       xm(n) =hm*s(n) 
 
where, * denotes the convolution operator. 
 
Let, 

 hm=[ hm(0), hm(1), ..., hm(L-1)]T, 
      s(n)=[s(n), s(n-1), ..., s(n-(L-1))]T, 
      y(n)=[x1(n), x2(n), ..., xM(n)]T,  
      n=1, 2, …, . 
 
Then, xm(n)=hm

Ts(n).                      (1) 
 
Further, y(n)=HTs(n)                       (2) 

where, 
 
 
 
 
 
 
 
 
 
 
 
    H  = [h1, h2, ..., hM]                          (3) 
 

Here, s(n) has to be estimated, H is unknown and 
to be estimated in order to obtain s(n). The received 
signal x(t) is known to us. We want to estimate s(n) 
adaptively from x(t). We sample x(t) at the rate of M 
times the symbol rate fs to obtain the vector, 

 
 y(n)=[x1(n), x2(n), ..., xM(n)]T, n=1, 2, …, .  
 
We are going to estimate s(n) from y(n) adaptively. 

In order to achieve that, we first formulate a 
methodology for estimating H adaptively. 

III. A NEW APPROACH FOR BLIND ADAPTIVE 

CHANNEL ESTIMATION (BACE) 

We now formulate an adaptive algorithm for 
estimating the parameters for the multi-channel 
system matrix H. We want to achieve that without any 
training signal, and hence we call it a Blind Adaptive 
Channel Estimator (BACE). Let us consider the multi-
channel model: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M=the number of channels or the number of samples 
per symbol; this has to be chosen appropriately. 
L=the maximum of the order of the channels; this is 
unknown and has to be estimated. 
 

We consider the estimation of M and L later. We 
can now write, 
 
s(n)*hi(n)=xi(n)                          (4) 
s(n)*hj(n)=xj(n)                          (5) 
 
By convolving Equation (4) with hj, we obtain, 
 

 

 x(t)     Sampler       y(n) =    x1(n) 

            at Mfs                        x2(n) 

                                               . 

                                               . 

                                               . 

                                              xM(n) 

 

 

                 h1            x1(n) 

                  

                 h2             x2(n)      

s(n) 

                  .                         y(n) 

                  . 

                  . 

       

                  hM           xM(n) 

 

 

 

            
           h1(0)      h2(0)      ...   hM(0) 
           h1(1)      h2(1)      ...   hM(1) 
H =       .             .           …     . 
              .             .           …     . 
              .             .           …     . 
           h1(L-1)  h2(L-1)  ...   hM(L-1) 
 

        

               h1(n)         x1(n)                                    h1(n) 

                                                    Blind 

               h2(n)         x2(n)          Adaptive            h2(n) 

s(n)        

                   .         y(n)               Channel                H(n) 

                   .                                                        .   

                   .                             Estimator           . 

 

              hM(n)          xM(n)         (BACE)             hM(n) 

           L-1 

xm(n)=∑ hm(i)s(n-i),   m=1, 2, ..., M 
           i=0 
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xi(n)*hj(n)=hj(n)*s(n)*hi(n)    
 
Substituting from Equation (5), we get, 
 
xi(n)*hj(n)= xj(n)*hi(n)                (6)   
            
Let, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where,  
 
xm(L+n)=[xm(L+n), xm(L+n-1), ..., xm(n+1)]T. 
 
Then, Equation (6) can be written as, 
 
xi(n)Thj=xj(n)Thi                          (8) 
 
where, hm=[hm(0), hm(1), ..., hm(L-1)]T. 
 
Now, we define an objective function Ξ as 
 
Ξ = E [ Ξ(n) ] 
 
where, E denotes the expectation operator, and the 
instantaneous objective function Ξ(n) is given by, 
 
 
 
 
 
 
where,  
eij(n)= xi(n)Thj - xj(n)Thi           
                                      
The important error relationship at nth symbol that our 
blind adaptive algorithm is based on is, 
 
 
 
 
From this relationship, we get, 
 

∂eij(n)/∂hi=-xj(n)                          (11) 
 
∂eij(n)/∂hj= xi(n)                          (12) 
 
Now, we concatenate them vectors x1(n), x2(n), ..., 
xM(n) to obtain the vector x(n), 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
xm(n) and hm are vectors of length L, 
x(n) and h are vectors of length ML. 
 
Since eij(n)=xi(n)Thj-xj(n)Thi ,  
 
the complement symmetry gives us, 
 
eij(n)= - eji(n).                              (15) 
 
We now define the matrix Γ(n) so that, 
 
 
 
 
 
 
 
 
 
 
 

where, I is an identity matrix of order (L×L) and Γ(n) is 
of order (ML×ML). 
 

The matrix Γ(n) is used in the algorithm for channel 
estimation. Once the algorithm is learned, all the 
elements in the matrix become zero or negligibly 
small.  

 
 
 

 

                xm(L)      xm(L-1)          ...     xm(1) 
                xm(L+1)  xm(L)             ...     xm(2) 
                    .            .                       ...        . 

Xm(L)=        .            .                       ...        . 
                    .            .                        ...        . 

                xm(L+(n-1))  xm(L+(n-2)) ...  xm(n) 

 
Xm(L)=    xm(L)T                     (7) 
               xm(L+1)T 
                 . 
                 . 
                 . 
                
               xm(L+(n-1))T  
 
 
 

eij(n)= xi(n)Thj - xj(n)Thi          (10) 

 
x (n)=    x1(n)                    (13) 
              x2(n) 
                 . 
                 . 
                 . 
                
              xM(n)  
 
 
 

 
     h =    h1

                    (14)  

              h2 
                 . 
                 . 
                 . 
                
              hM  
 
 
 

 

               e11(n)I    e12(n)I       ...     e1M(n)I        (16) 

 Γ (n) =   e21(n)I    e22(n)I       ...     e2M(n)I 
                    .            .                 ...        . 

                  .            .                  ...        . 
                    .            .                 ...        . 

                eM1(n)I   eM2(n)I       ...    eMM(n)I 

              M-1    M  

Ξ(n)= 
1

2
  ∑      ∑ eij

2                     (9) 

              i=1   j=i+1 
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Since eii(n)=0 and eij(n) = - eji(n), we get, 
 
 
 
 
 
 
 
 
 
 
 

Now, the 
𝜕Ξ(𝑛)

𝜕𝒉
 can be written as, 

 
𝜕Ξ(𝑛)

𝜕𝒉
 = - Γ(n)x(n)                       (18) 

 
We can now minimize Ξ(n) using the gradient search, 
to obtain the parameter update relationship, 
 

h(n) = h(n-1) – α 
𝜕𝛯(𝑛)

𝜕𝒉
              (19) 

 
where, α is the learning constant, h(n) is the 
parameter estimate after n symbols. 
 

The Equations (18) and (19) together provide the 
parameter update for the learning algorithm. 
 
 
The Learning Algorithm: 
 
h(n) = h(n-1) + α Γ(n-1)x(n)      (20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
eij(n)= xi(n)Thj(n-1)-xj(n)Thi(n-1), 
 
which is innovation at symbol n. 
 
xm(n)=[xm(n), xm(n-1), ..., xm(n-(L-1))]T,  
 
m=1,2, ..., M. 
hm is a vector of order L, 
h is a vector of order ML, 
xm(n) is a vector of order L, 
x(n) is a vector of order ML 
Γ is a matrix of order ML×ML, 
I is an identity matrix of order L×L. 
 
Note that Γ(n) is not available at symbol n. Hence, we 
have replaced Γ(n) by the best available estimate, 
Γ(n-1), to obtain the learning algorithm given in 
Equation (20). 
 

IV. ESTIMATION OF THE ORER OF THE 
CHANNEL AND THE RATE OF FRACTIONAL 
SAMPLING 

The information required in estimating the order of 
the channel, L, and the rate of fractional sampling or 
the number of samples per bit, M, are inherent in the 
channel parameter matrix H obtained for arbitrary L 
and M, 

 
H=[h1, h2, ..., hM],  
 
where hm is a vector of order L, and H is a matrix or 
order L×M, L≤M. 

Initially, we choose M arbitrarily and set L=M. 
Then, we estimate the channel parameter matrix H. 
Using singular value decomposition of matrix H, we 
obtain, 

 
H=UΛV                                   (21) 
where, Λ is a diagonal matrix. 
  
Let λ=diag(Λ) 
       =[λ1, λ2, ..., λM]                  (22) 
 
where, λ1≥ λ2≥λ3, ..., ≥λM         (23) 
 

If the order of the channel is less than the 
fractional sampling M, then the number of the 
dominant singular values will be equivalent to the 
order of the channel L. 

 

                0I     e12(n)I   e13(n)I   ...  e1M(n)I        (17) 

 Γ (n) =  -e12(n)I    0I   e23(n)I   ...  e2M(n)I 
                    .            .                 ...        . 

                  .            .                  ...        . 
                    .            .                  ...        . 

                -e1M(n)I -e2M(n)I  -e3M(n)I  ... 0I 
 

 
x (n)=    x1(n)         
              x2(n) 
                 . 
                 . 
                 . 
                
              xM(n)  
 
 
 

 
     h =    h1

        

              h2 
                 . 
                 . 
                 . 
                
              hM  
 
 
 

 

                0I     e12(n)I   e13(n)I   ...  e1M(n)I        
 Γ (n) =  -e12(n)I    0I   e23(n)I   ...  e2M(n)I 
                    .            .                 ...        . 

                  .            .                  ...        . 
                    .            .                  ...        . 

                -e1M(n)I -e2M(n)I  -e3M(n)I  ... 0I 
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Proper value for L and M can be found in the 
following steps: 
 
Step-1: If all the singular values of matrix H are 
dominant, then increase the rate of fractional sampling 
M and restart the learning. 
 
Step-2: If the number of dominant singular values of 
matrix H is less than M, then, the proper choice of the 
fractional sampling rate M has been made. Then, we 
have, 
L= effective rank of H, 
where, the effective rank is the number of dominant 
singular values H. 
 
Step-3: Once the proper values for L and M are 
found, restart the learning process and estimate the 
parameter matrix H. 
 

V. ESTIMATION OF BITS 
From the Equation (2), we have the single channel 

to multi-channel model given by, 
 

y(n)=HTs(n)                                 (24) 
 
where, hm=[hm(0), hm(1), ..., hm(L-1)]T, 
s(n)=[s(n), s(n-1), ..., s(n-(L-1))]T, 
y(n)=[x1(n), x2(n), ..., xM(n)]T, n=1, 2, …, . 
 
H=[h1, h2, ..., hM]. 
 
The process of estimating s(n) can be illustrated as 
follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can solve the equation (24) to obtain, 
 
s(n)=(HHT)-1Hy(n)                  (25) 

 
From the proper choice of L, the matrix H is full rank. 
Therefore, the solution of equation (25) is unique. 
Now, let, 
 
P=(HHT)-1H. 
 
In the event the matrix H is nearly singular, pseudo-
inverse is chosen in place of (HHT)-1. 
Now, we can write, 
 
 
 
 
 
 
 
 
where, pT is the first row of the matrix P. 
We can now obtain the nth symbol s(n), 
 

s(n)=pTy(n)                           (26) 
 

In order to recover symbols accurately, it is 
necessary to select the rate of fractional sampling M 
such that, M ≥ L. We have already found a way to 
achieve this in the previous section. 
 

VI. PERFORMANCE EVALUATION 
We have seen that the Blind Adaptive Equalizer 

performs its operations in two stages: 
 
1. Estimation of the channel 
2. Estimation of the symbols 

 
We want to find out how well the Blind Adaptive 
Equalizer carryout these tasks. We want to see how 
good the channel estimator is, and how the 
performance of the channel estimator varies with the 
signal to noise ratio (snr). 

We also want to know how often an estimated 
symbol differs from the transmitted symbol. In other 
words, we want to know the probability of error. In 
fact, the probability of error provides us the overall 
performance of the equalizer. 

In the case of a data adaptive learning algorithm, it 
is important to know how fast the algorithm learns. In 
order to find out the speed of the algorithm, we also 
need to define the learning curves. 

We know that the bias and variance are two very 
useful performance evaluators for any parameter 
estimation algorithm. Therefore, we use the bias and 
variance of the channel parameter estimates as 
performance evaluators in the channel estimation part 
of the Blind Adaptive Equalizer. However, we have to 
modify the conventional bias and variance to 
incorporate the multi-channel situation so that we 
have one consolidated bias and one consolidated 
variance. To achieve that, we define normalized 
multichannel parameter matrix Hnor so that the ith 
column (hi)nor of matrix Hnor is given by, 

 

 

P =   pT 

        --- 

         Q 
 

                     x(t) [Input] 

 

  Fractional Sampler 

Samples x(t) at M times 

        the Bit Rate  

 

     y(n) [Vector of Fractional Samples at nth bit]  

 

                 Blind Adaptive Channel Estimator 

     y(n)             Estimates H from y(n) 

 

 

                                   H[Channel Matrix] 

 

    y(n)     Bit Estimator Estimates s(n) 

                       From y(n) and H 

 

 

 

 

                                   s(n) [output] 
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(hi)nor=(1/hi(0))hi. 
 
In other words, we have normalized each channel 
parameter vector with respect to the first element of 
each channel. Now, instead of H, we deal with Hnor. 
This will eliminate any ambiguity regarding the 
presence of any multiplication factor. 

Let the true channel parameter matrix be H, and 
the estimated channel parameter matrix be est(H). 
Then, the error matrix is given by, 

 
ΔHnor= Hnor - est(Hnor). 
 
Definition: Bias  

We define bias as, 
Bias=mean(abs(E[ΔHnor])) 
 
where, for any matrix A, 
mean(A) is a scalar quantity where it is the mean of all 
the elements in matrix A, 
abs(A) is a matrix where each element of matrix A is 
replaced by the absolute value of each element, and 
E is the expectation operator. 
 
Definition: Variance  

We define Variance as, 
 

Variance=E[mean(ΔHnor⊗ΔHnor)] 
 

where, E denotes the expectation operator, and ⊗ 
denotes the element by element product between two 
matrices. 
 
Performance Bounds: 

The curves Bias and Variance against signal to 
noise ratio snr provide the performance bounds of the 
algorithm. These curves provide the lowest signal to 
noise ratio that the algorithm could be used 
successfully in practice. 

 
Probability of Error: 

Let us assume that we have transmitted n symbols 
over a channel, and out of that nerror number of 
symbols is in error. Then, the probability of error is 
defined as, 

 
Probability of Error = E[𝑙𝑖𝑚

𝑛→∞
{nerror/n}], 

 
where, E denotes the expectation operator. 
 
The Probability of Error versus snr gives us the overall 
performance of the communication system. 
 

VII. THE IMPLEMENTATION OF THE BLIND 
ADAPTIVE EQUALIZER 
 
Step-1: Choose M, the rate of fractional sampling for 
the number of samples per bit arbitrarily. 
 
Step-2: Set L=M, L is the maximum length of 
channels in the multi-channel system. 
 

Step-3: Initialize h(0) using a small random sequence, 
where,  
 
 
 
 
 
 
 
 
 
 
 
 
Step-4: Update h using the algorithm in Equation (20), 
 
h(n) = h(n-1) + α Γ(n-1)x(n) 
 
where α is a small value.  
We choose α=0.01. 
 
 
 
 
 
 
 
 
 
 
 
hm(n) is the estimate of hm after m symbols. 
 
 
 
 
 
 
 
 
 
 
 

I is an identity matrix of order L×L, and Γ is of order 

LM×LM, 
eij(n)= xi(n)Thj(n-1) - xj(n)Thi(n-1),  
 
which is innovation at symbol n, 
 
 
 
 
 
 
 
 
 
 
 
 
xm(n)=[xm(n), xm(n-1), ..., xm(n-(L-1))]T,  
m=1,2, ..., M. 

 
  h(0) =   h1

 (0)       

               h2(0) 
                 . 
                 . 
                 . 
                
               hM(0)  
 
 
 

 
  h(n) =   h1

 (n)       

               h2(n) 
                 . 
                 . 
                 . 
                
               hM(n)  
 
 
 

 

                e11(n)I    e12(n)I       ...     e1M(n)I    
 Γ (n) =   e21(n)I    e22(n)I       ...     e2M(n)I 
                    .            .                 ...        . 

                  .            .                  ...        . 
                    .            .                 ...        . 

                eM1(n)I   eM2(n)I       ...    eMM(n)I 

 
x (n)=    x1(n)         
              x2(n) 
                 . 
                 . 
                 . 
                
              xM(n)  
 
 
 

http://www.jmess.org/


Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 3 Issue 1, January - 2017 

www.jmess.org 

JMESSP13420256 1259 

 
Step-5: Obtain the matrix H, where  
 H=[h1, h2, ..., hM]. 
 
Step-6: Evaluate the singular values of H. 
 
Step-7: If the rank(H)=M, then, choose a higher rate 
and restart the algorithm from Step-2. 
 
Step-8: If the rank(H)<M, then set L=rank(H) and 
restart learning from Step-2. 
 
Step-9: Estimate symbol s(n) using the relationships, 
 
s(n)=pTy(n) 
 
P=(HHT)-1H 
 
 
 
 
 
 
 
 
From the choice of L, the matrix H is full rank. Further, 
L≤M. Therefore, the solution is unique. In the event H 
in nearly singular, P is chosen as the pseudo-inverse 
of HT. 
 
Note: The algorithm can readily be extendable into 
complex space. 
 

VIII. SIMULATION RESULTS  
In order to test the performance of the algorithm, 

we use a binary signal constellation given below: 
 

 

                 ⊕                          ⊕     
               -1                          +1 
               (Signal Constellation) 
 
 
The Symbols are chosen randomly from the 
constellation for transmission. 
 
For the purpose of simulation, we choose H given by, 
 
 
 
 
 
 
 
 
 

Now that we have both input and the channel 
parameter matrix, we can obtain the channel output. 
We add appropriate amount of random Gaussian 
noise to obtain a noise corrupted channel output for a 
given signal to noise ratio, snr. 

We implement the algorithm and repeat it for 100 
independent realizations to obtain Bias, Variance, 
Learning Curves, and the Probability of Error. We use 
2000 symbols in estimating H. The learning constant 
α=0.01. 

 

 
 

A. Learning Curves, Bias and Variance 
The simulation results for the Learning Curves, the 

Bias and the Variance are given in the Diagram-1. 
 

Figure-1.1: Learning Curves 
This shows the learning curves for the Blind 

Adaptive Equalizer. They are obtained by averaging 
100 independent realizations. We have shown 
learning curves for snr=10, 15, 20, 25, 30, 35, and 40 
dB. Since all the curves are overlapping, it appears 
that the learning curves are independent of the signal 
to noise ratio (snr) for snr≥10. This indicates that the 
speed of the learning algorithm is independent of the 
signal to noise ratio for higher snr values. The 
algorithm learns in as few as 20 symbols. 

 
Figure-1.2: Bias vs. snr 

The bias against signal to noise ratio (snr) is 
shown. As expected, bias decreases as the signal to 
noise ratio increases. 

 
Figure-1.3: Variance vs. snr 

The variance against signal to noise ratio is shown. 
It is clear that for snr>20 dB, the algorithm performs 
with a negligible variance. The Blind Adaptive 

 

P =   pT 

        --- 

         Q 

 

            
          1      0.2   0.6   0.2  -0.3  -0.9 
H =    0.5   0.7   0.1  -0.1  0.5    0.6 
          0.3  0.1   0.5    0.2  0.9   -0.5 
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Equalizer estimates parameters of the channel reliably 
at high signal to noise ratio. 

 
B. Error Probability and Signal constellation 

The simulation results for the error probabilities are 
given in the Diagram-2. 

 
Figure-2.1: Probability of Error 

The error probability against signal to noise ratio 
(snr) is plotted. The error probabilities are calculated 
using 106 transmitted symbols. The error probability 
provides us the overall performance of the digital 
communication system. As we increase the signal to 
noise ratio beyond 20 dB, the algorithm performs with 
zero probability of error. 

 
Figure-2.2: Channel Output  
(Signal Constellation) for snr=100 dB 

We have shown here the channel output for almost 
no noise environment, snr=100 dB.  Since we have 
considered 2-point signal constellation and a channel 
of length 3, that is a channel containing three 
parameters, the number of output levels would be 23, 
which is evident from the Figure. 

The effect of the channel on the input constellation 
is very evident from the Figure. It shows what exactly 
channel does to an input signal. The channel has 
dispersed the input signal. At the receiver, what we 
have is this dispersed signal plus noise. Our effort is 
to recover the true input from the dispersed signal 
received at the receiver. The results we obtained 
using the algorithm presented here is shown in 
Figure-2.3: Blind Adaptive Equalizer Output for 
snr=100 dB 

This illustrates the recovered transmitted signal or 
the output of the adaptive equalizer. What is shown 
here is the output of the Blind Adaptive Equalizer 
before the slicer In fact, the algorithm recovered the 
transmitted symbol accurately. Since it is evident here 
that the Blind Adaptive Equalizer recovers signal 
accurately for almost no noise environment, we can 
now consider the performance under noisy conditions. 

 
Figure-2.4: Input Signal Constellation 

Here, we have shown the input signal constellation 
for comparison. 

 
C. Signal Constellation 

The simulation results for the signal constellation 
are given in the Diagram-3. Here, we present the 
following for different signal to noise ratios (snr): 

 s(n), input signal 

 x(n), output of the channel for the received 
baseband signal 

 est(s(n)), estimated symbols (before the 
slicer). 

 
 
 
 
 
 

In each Figure in Diagram-3: 

 The lower level represents x(n)  

 The middle level represents s(n)  

 The upper level represents est(s(n)) 
 

 
Figures 3.1-4.3 shows s(n), x(n), and est(s(n)) for 
different signal to noise ratio (snr) values. Figure-4.4 
illustrates the true input signal constellation s(k). 

From Figure-3.1, it is clear that the Blind Adaptive 
Equalizer was not able to estimate the symbols 
accurately at snr=10 dB. However, as we increase the 
snr, the Blind Adaptive Equalizer starts to distinguish 
symbols accurately.  

As we see from Figure-3.3, the signal constellation 
of the output of the channel is completely overlapping 
at snr=20 dB. However, the adaptive Blind Equalizer 
clearly brings out two clusters representing binary 
signal constellation in its output. 

At higher snr values, snr≥20 dB, the Blind Adaptive 
Equalizer recovers the transmitted symbols with no 
error. 

 
D. Estimation of L and M 

In order to estimate the length of the channel, L 
and the rate of fractional sampling M, we have to 
obtain the singular value vector λ of the estimated 
channel parameter matrix est(H)) for arbitrary M. 

Let the normalized singular value vector λnor be, 
 

λnor=[1, λ2/λ1, λ3/λ1, ..., λM/λ1], 
where, λ=[λ1, λ2, ..., λM]. 
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The normalized singular vector λnor(snr) for different 
snr values are given below: 
 
λnor(10)=[1, 0.7641, 0.1606, 0.0490, 0.0197, 0.0002] 
λnor(15)=[1, 0.6911, 0.2516, 0.0138, 0.0077, 0.0016] 
λnor(20)=[1, 0.6929, 0.0661, 0.0088, 0.0050, 0.0013] 
λnor(25)=[1, 0.5892, 0.0963, 0.0055, 0.0032, 0.0001] 
λnor(30)=[1, 0.5177, 0.1620, 0.0038, 0.0023, 0.0008] 
λnor(35)=[1, 0.4408, 0.2914, 0.0144, 0.0013, 0.0001] 
λnor(40)=[1, 0.7175, 0.2268, 0.0070, 0.0018, 0.0000] 
λnor(100)=[1, 0.5067, 0.4703, 0.0000, 0.0000, 0.0000] 
 

The number of dominant singular values is equal to 
the true order of the model, L. This also gives us a 
clue in determining M, the fractional sampling 
required. If the singular values of the matrix est(H) do 
not tail off, we have to increase the fractional sampling 
until we see the tailing off on the singular values of the 
est(H). 

Therefore, singular values of est(H) not only help 
us to determine the order of the channel L, but also in 
choosing the proper rate of fractional sampling M. 

 
IX. CONCLUSIONS 
In a communication system, modem has to be 

initialized before the actual data transfer takes place. 
During the initialization period, the system will 
estimate the channel so that the unwanted effects of 
the channel can be taken out so that the transmitted 
symbols can be estimated while removing the inter 
symbol interference brought by the channel. The 
estimation of the channel is usually achieved 
adaptively by transmitting a training signal that is 

known to the receiver. The Blind Adaptive Equalizer 
achieves the estimation of the channel and the 
transmitted information without any training signal. 
The estimation of the channel and the estimation of 
the transmitted symbols are done using the 
transmitted information itself adaptively. 

The Blind Adaptive Equalizer is based on the 
conversion of the single channel into a multichannel 
system by using the fractional sampling. The multi-
channel parameter matrix can be used to estimate the 
order of the channel, to determine the fractional 
sampling required, and to estimate the information 
transmitted. Its data adaptive nature allows it to be 
used in time varying channels. Since it does not 
require a training signal that is known to the receiver, 
it can be used in the signal interception environment. 

The Blind Adaptive Equalizer’s learning 
characteristic indicates that it is a fast learner and the 
speed of the learning is independent of the signal to 
noise ratio (snr) for higher snr values. At higher snr 
values, the Blind Adaptive Equalizer is capable of 
eliminating the inter-symbol interference providing the 
estimate of the symbol with zero probability of error. 
The Blind Adaptive Equalizer provides an elegant and 
speedy learning mechanism for Modems in digital 
communication systems without the need of a training 
signal. 
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