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Abstract — In recent years, research on data 
mining is widely concerned. A challenging 
problem is how to reduce the overall computation 
time of the mining algorithms association rules. In 
this paper, we propose fuzzy data compression 
method based on FP-Tree structure to find the 
frequent item sets. With this method, we use the 
hedge algebras for the fuzzy attributes to be 
defuzzicated. Experiment shows that this 
approach gives better results than a number of 
methods proposed previously. 
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I. INTRODUCTION 

Recently, the strong development of technology 
has made the ability to collect and store the 
information systems increase quickly. Besides, the 
computerization of the manufacturing operations, 
business and many other areas of activity has created 
a large amount of data storage. Millions of database 
has been used in the production, sales, management, 
etc. Therefore, many of which are extremely large 
databases. This boom has led to an urgent 
requirement is to have the new techniques and tools 
to automatically convert huge amounts of data into 
useful knowledge. Then, the data mining techniques 
nowadays become a topical field of information 
technology in the world. Mining association rules has 
been implemented in research and bring good results  
[6] [7]. The authors have proposed many measures to 
reduce the time taken to explore the law, such as 
solution of mining association rules in parallel, using 
the compressed transaction solution on FP-Tree tree 
with binary database. However, in this area, there 
have been still many raised issues needed to be 
further investigated and resolved. Recently, the 
algorithms using data compression based on FP-tree 
in binary database provide a good solution and can 
reduce storage space requirements and the time for 
data processing. The authors of [6] [7] have proposed 
a solution for fuzzy transaction database compression 
based on FP-tree. With this approach, the authors 
have used the fuzzy theory to defuzzicate the 

transaction database. Processing the fuzzy data for 
data mining in  

fuzzy association rules is mainly based on the theory 
of fuzzy set as shown in [6] [7]. However, through the 
way of using fuzzy, there are many factors affecting 
the accuracy such as determination of fuzzy sets and 
the opinions of experts. In order to improve the 
efficiency of mining association rules, in this paper we 
present method of defuzzicating the transaction 
database based on HA and compress fuzzy 
transaction database based on FP-Tree. Based 
approach will enable to reduce the number of nodes in 
the tree less than the method [6] [7] . 

Rest of this paper is organized as follows. The 
related knowledge briefly is presented in Section II. In 
Section III, we presented mining fuzzy association 
rules. Then, the computational results and analyzed 
are shown in Section IV. The conclusions are 
discussed in Section V. 

II. RELATED KNOWLEDGE 

A. Combination rule [1][1] 

Propose I =  I1, I2, … , Im  is the set of m separate 
properties, each property is called an item. D is a 
transaction database, in which each record T is a 

transaction and containing the items T  I. 

Definition 1: An association rule is a relation X ⇒ Y, 

where X, Y  I is the ItemSets, and X ∩ Y =  ∅. Here, 
X is called the premise, Y is a result statement. Two 
important parameters of association rules are the 
support (s) and reliability (c). 

Definition 2: The support of association rules X ⇒ Y 
is the percentage of the record X ∪ Y including of the 
total of transactions in the database. 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ⇒ 𝑌)  =  𝑃(𝑋 ∪ 𝑌)  =  
𝑛(𝑋∪𝑌)

𝑁
  (2.1) 

Definition 3: The confidence is the ratio of the 
number of transactions that contain X ∪ Y  and the 
ones containing X. 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 ⇒ 𝑌)  =  𝑃 (
𝑋

𝑌
)  =  

𝑛(𝑋∪𝑌)

𝑛(𝑌)
    (2.2) 

Where: n(X)  is the number of transactions 
containing X, N is the total number of transactions in 
the transaction database. 
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Exploiting association rules through the database 
is to find all the laws which have the support and the 
confidence greater than the support level Min_Sup 
and the confidence level Min_Sup is determined by 
the user in advance. 

Based on the fuzzy association rules, each item 
can be divided into the fuzzy domain (such as "youth", 
"middle-aged", ...), in fact we split an initial item into 
small items and the value of each row on that item will 
be in [0,1], not just 0 or 1. 

Then the support of a fuzzy domain sk  which 
belongs to the item xi is defined as: 

𝐹𝑆(𝐴𝑠𝑘

𝑥𝑖 )  =  
1

𝑁
∑ 𝜇𝑠𝑘

𝑥𝑖 (𝑑𝑗
𝑥𝑖)𝑁

𝑗 = 1  (II.1) 

And the support of fuzzy domains s1, s2, . . , sk of the 
corresponding items x1, x2, . . , xk will be: 

𝐹𝑆(𝐴𝑠1

𝑥1 , 𝐴𝑠2

𝑥2 , … , 𝐴𝑘
𝑥𝑘)  =

 
1

𝑁
∑ 𝑚𝑖𝑛 (𝜇𝑠1

𝑥1(𝑑𝑗
𝑥1), 𝜇𝑠2

𝑥2(𝑑𝑗
𝑥2), … , 𝜇𝑠𝑘

𝑥𝑘(𝑑𝑗
𝑥𝑘))𝑁

𝑗 = 1  (II.2) 

With xi is ith item, sj is fuzzy domain of ith item, N is 

the total of transactions in the database, μsk

xi (dj
xi) is the 

dependent level of values in ith column, jth row on 
fuzzy sets sk. 

B. The FP-Growth Algorithm [2] 

FP-Growth was proposed by Jiawei Han's team, 
University of Illinois United States in 2000 [2]. FP-
Growth algorithm transferred all the data into internal 
memory in a tree structure, the process to find the 
frequent set is the process of the tree browser. FP-
Growth hit a new mark in the development of data 
mining, solves two nodes of the algorithm Apriori and 
Partition. The regular data items are detected with 
twice browse the database and no exceptional 
process for the candidate set. 

FP-Tree algorithm is effective in calculating for 
three reasons. First, the process of solving the 
problem is just based on the regular data item, 
irregular data items are removed, so the data to 
review will be much smaller. Second, this algorithm 
just browses the database twice. Third, the FP-Tree 
uses the method of “divide and rule” to significantly 
reduce the size of the tree, a long branch was created 
with appended data item into a short branch, not to 
start over. 

In the process of mining the database, users can 
change the level of support, but with FP-Tree, while 
changing the level of support, it must be done from 
the beginning. Another limitation of the FP-Tree is not 
suitable for increasing cases of data. Once the 
database changes, data mining work must also begin 
again. 

C. Some basic definitions of hedge algebra  

Consider an example of a set of linguistic value is 

the linguistic domain of the speed linguistic variable 

(SPEED) including the followings: X = dom(SPEED) = 
{big, small, Very big, Very small, More big, More 

small, Approximately big, Approximately small, Little 
big, Little small, Possible big, Possible small, Less big, 
Less small, Very More big, Very More small, Very 
Possible big, Very Possible small, …}. Meanwhile, 

linguistic domain 𝑋 =  𝑑𝑜𝑚(𝑆𝑃𝐸𝐸𝐷)  can be 
expressed as an algebraic structure 𝐴𝑋 =  (𝑋, 𝐺, 𝐻, ), 
where: X is the background set of AX; 

G is the set of original elements (set of generating 
elements: big, small), H is the set of monadic 
operators, called the hedges (Very, More, ...), 
demonstrates the order correlation on the linguistic 
values which is "induced" from the natural semantics 
of "the elements". X was born from G by the hedges 
of H. Thus, the representation of each element of x = 

hnhn-1…h1c, c  G. The set of the elements that is 
generated from the elements x and is represented as 
H (x). 

Definition 2.1: [4][5]Hedge algebra is a quintuple, 
𝐴𝑋 = (𝑋, 𝐺, 𝐶, 𝐻, ) , Where: 𝐺 =  {𝑐, 𝑐+} , 𝐶 =
 {0, 𝑊, 1} , 𝐻 =  𝐻  𝐻 +  và   presents the order 

correlation on 𝑋. 

Element 0 indicates the smallest element, the 
element 1 stands for only the largest elements and 
elements W is neutral one. 
Definition 2.2: [4][5] Suppose the hedge algebra 𝐴𝑋 =
 (𝑋, 𝐺, 𝐶, 𝐻, ) , 𝑓: 𝑋[0, 1]  is the semantic quantitative 

function of AX if h, k H+ or h, k H and x, y X: 

|
𝑓(ℎ𝑥)−𝑓(𝑥)

𝑓(𝑘𝑥)−𝑓(𝑥)
| = |

𝑓(ℎ𝑦)−𝑓(𝑦)

𝑓(𝑘𝑦)−𝑓(𝑦)
| (II.3) 

Given a semantic quantification function f of X. At any 

xX, the fuzzy of x is then measured by the diameter  

𝑓(𝐻(𝑥))  [0, 1]. 

Definition 2.3: Fuzziness measure [5]. 

fm: X  [0, 1] is called the fuzziness measure 
when: 𝑓𝑚(𝑐)  =   >  0  and 𝑓𝑚(𝑐+)  =  1 −  >  0 , 
where 𝑐, 𝑐 +   𝐺. 

Suppose the set of hedge algebras 𝐻 =  𝐻 + 𝐻 , 
𝐻 =  {ℎ − 1, ℎ − 2, … , ℎ − 𝑞}  with ℎ − 1 < ℎ − 2 <
⋯ <  ℎ − 𝑞 , 𝐻+ =  {ℎ1, ℎ 2, … , ℎ 𝑝}  where ℎ1 < ℎ2 <
 …  < ℎ𝑝. Then: 

With any x, y X, hH, 
𝑓𝑚(ℎ𝑥)

𝑓𝑚(𝑥)
=

𝑓𝑚(ℎ𝑦)

𝑓𝑚(𝑦)
  (II.4) 

This equality does not depend on the elements x, y, 

and therefore we can denote it as (h) and call it as 
fuzziness measure of the hedge h. The characteristic 
of 𝑓𝑚(𝑥) and (ℎ) is as follows: 

𝑓𝑚(ℎ𝑥)  =  (ℎ)𝑓𝑚(𝑥),𝑥𝑋     (II.5) 

∑ 𝑓𝑚(ℎ𝑖𝑐) = 𝑓𝑚(𝑐)𝑝
𝑖=−𝑞,𝑖≠0 , with 𝑐{𝑐, 𝑐+}  (II.6) 

∑ 𝑓𝑚(ℎ𝑖𝑥) = 𝑓𝑚(𝑥)𝑝
𝑖=−𝑞,𝑖≠0     (II.7) 

∑ 𝜇(ℎ𝑖)
−𝑞
𝑖=−1 = 𝛼 and ∑ 𝜇(ℎ𝑖)

𝑝
𝑖=1 = 𝛽, with ,  >  0 and 

 +  = 1 (II.8) 

Sign function: 𝑆𝑖𝑔𝑛: 𝑋  {−1, 0, 1}  is recursively 
defined as follows [5]: 

http://www.jmess.org/
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With 𝑘, ℎ  𝐻, 𝑐  { 𝑐, 𝑐+ } , sign(c+) = +1 and 

𝑠𝑖𝑔𝑛(𝑐)  = – 1 , {ℎ  𝐻 + | 𝑠𝑖𝑔𝑛(ℎ)  =  +1}  and 
{ℎ  𝐻 | 𝑠𝑖𝑔𝑛(ℎ)  = – 1}. 

𝑠𝑖𝑔𝑛(ℎ𝑐)  =  +𝑠𝑖𝑔𝑛(𝑐)  if h is positive to c and 
𝑠𝑖𝑔𝑛(ℎ𝑐)  =  −𝑠𝑖𝑔𝑛(𝑐) if h is positive to c.  

𝑠𝑖𝑔𝑛(ℎ𝑐) =  𝑠𝑖𝑔𝑛(ℎ ) 𝑠𝑖𝑔𝑛(𝑐)  

𝑠𝑖𝑔𝑛(𝑘ℎ𝑥) = +𝑠𝑖𝑔𝑛(ℎ𝑥) if k positive to h (sign(k, h) = 

+1) and 𝑠𝑖𝑔𝑛(𝑘ℎ𝑥) = −𝑠𝑖𝑔𝑛(ℎ𝑥)  if k positive to h 
(𝑠𝑖𝑔𝑛(𝑘, ℎ)  =  +1) 

𝑥  𝐻(𝐺) can be presented as 𝑥 =  ℎ𝑚 … ℎ1𝑐, with 

𝑐  𝐺 and ℎ1, … , ℎ𝑚  𝐻. Then:  

𝑠𝑖𝑔𝑛(𝑥) =  𝑠𝑖𝑔𝑛(ℎ𝑚, ℎ𝑚 −
1) …  𝑠𝑖𝑔𝑛(ℎ2, ℎ1) 𝑠𝑖𝑔𝑛(ℎ1) 𝑠𝑖𝑔𝑛(𝑐) (II.9) 

(𝑠𝑖𝑔𝑛(ℎ𝑥)  =  +1)  (ℎ𝑥 ≥  𝑥) 𝑎𝑛𝑑 (𝑠𝑖𝑔𝑛(ℎ𝑥)  =
 – 1)  (ℎ𝑥 ≤  𝑥)  (II.10) 

Suppose to preset the fuzziness measure of hedges 

(h) and the values of fuzziness measure for the 

generating elements ( )fm c
, ( )fm c

and  is the 

neutral element. 

The semantic quantification function v  of T is 

recursively defined as follows [5]: 

𝑣(𝑤) = 𝑓𝑚(𝑐−) , 𝑣(𝑐−) = 𝜃 − 𝛼f𝑚(𝑐−) = 𝛽𝑓𝑚(𝑐−) , 

𝑣(𝑐+) = 𝜃 + 𝛼f𝑚(𝑐+) = 1 − 𝛽𝑓𝑚(𝑐+) (II.11)
 

( )
( ) ( ) ( ){ ( ) ( ) ( )}

j

j j i j ji sign j
v h x v x sign h x fm h x h x fm h x


  

  

(II.12) 

1
( ) [1 ( ) ( )( )] { , }

2
j j p jh x Sign h x sign h h x       

, 𝑗  [−𝑞^𝑝], 𝑗  0. 

D. Method of defuzzication 

Based on the hedge algebra’s approach, we will 
carry out computing the membership function value of 
each value of the database in the following way. First, 
we consider each attribute domain of each fuzziness 
as a hedge algebra. Instead of building the 
membership functions for the fuzzy domain was 
identified, we used quantitative semantic value to 
measure the value of the membership level at any of 
these items which is reviewed the new fuzzy domain 
determined. 

Step 1: Standardize the values of the fuzzy 
properties in the range [0,1]. 

Step 2: Consider the fuzzy domain 𝑠𝑗  of the 

attribute 𝑥𝑖  as the elements of hedge algebra 𝐴𝑋𝑖 . 

Meanwhile, any of value dj
xi  of 𝑥𝑖  is located between 

any two semantically quantitative values of the two 

certain semantic elements 𝐴𝑋𝑖  and the distance on 
the interval [0,1] (is the determined domain 

standardized of attributes 𝑥𝑖)  between dj
xi  and the 

semantically quantitative value of the two elements 

that is the closest to dj
xi to the both sides can be used 

to determine the proximity of dj
xi) into those two fuzzy 

domains (two elements of hedge algebra). The 

proximity between dj
xi  with other elements of hedge 

algebra is determined by 0. To determine the final 
membership level, we must standardize (transfer of 
value in the interval [0, 1] and then take 1 minus that 

standardized distance). For each value dj
xi  , a couple 

of membership degree will be formed 

Therefore, to calculate the membership degree of 

attributes 𝑥𝑖  in fuzzy domain 𝑠𝑗 : 𝜇𝑠𝑗
(dj

xi) = 1 −

| 𝑣(𝑠𝑗) − dj
xi  | , with 𝑣(𝑠𝑗)  is the semantically 

quantitative value of the element 𝑠𝑗. 

III. MINING FUZZY ASSOCIATION RULES 

In this paper, we propose using hedge algebra and FP-

Tree to find popular files. Finding common set is involved 

in the following steps: Phase 1: Defuzzicate the transaction 

database based on hedge algebra. Using fuzzy transaction 

database to build FP-tree fuzzy tree (called as HAFP), 

Phase 2: Finding common set based on HAFP trees. 

A. Algorithm for the construction of fuzzy tree HAFP 

[6]. 

Symbol of parameters of the algorithm is as 
follows: 

N Total transactions in the transaction database 
m Total properties 
𝐴𝑗  the jth property, 1 ≤ j ≤ m (digital attribute or 

category one) 
|𝐴𝑗| The number of hedge tag of the property Aj 

𝑅𝑗𝑘 The jth hedge tag of attributes Aj 

𝐷(𝑖) The ith transaction data, 1 ≤ i ≤ N 

𝑣𝑗
(𝑖)

 The value of the Aj in D(i) 

𝑓𝑗𝑘
(𝑖)

 The value of the membership degree vj
(i)

 of 

hedge labels Rjk, 0 ≤fjk(i) ≤ 1 

𝑆𝑢𝑝(𝑅𝑗𝑘) The degree of support Rjk 

Sup 
The supportive value of each 
common set or item. 

Conf 
The reliability of each common set or 
item. 

 
Min_Sup 

The given minimum support value  

𝐿𝑟 
The set of common items that 
correspond with r hedge labels (item 
set) 1 ≤ r ≤ m 

Input: Transaction database D contains N 
transactions, the hedge algebras give the fuzzy 
atributes, Min_Sup 

Output: Fuzzy tree HAFP 
Step 1. Defuzzicate the fuzzy properties in the 
database. In this step, we use fuzzy method that is 
presented in item 2.4. The results of this step 
gained fuzzy transaction database. 
Step 2. Browse the database is completed in 
Step 1, to compute the support degree expCount(I) 
and the frequency of appearance f(I). Frequency of 
appearance f(I) is the number of transactions 
contained I that is not equal 0. 

http://www.jmess.org/
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Step 3. Based on the support degree, 
expCount(I) is determined in the Step 2. If the value of 
support degree is more than or equal to Min_Sup, I is 
taken to the common set L1.  

𝐿1 = {𝐼: 𝑒𝑥𝑝𝐶𝑜𝑢𝑛𝑡(𝐼) | 𝑒𝑥𝑝𝐶𝑜𝑢𝑛𝑡(𝐼) ≥ 𝑁 ∗ 𝑀𝑖𝑛𝑆𝑢𝑝} 

Step 4. Sort the items in descending order in L1 
of the frequency of appearance f(I) in I. 

Step 5. Based on L1, build Header_Table 
contains: Item, expCount, and the frequency of 
appearance of item. Sort the items by the same way 
as in Step 4. 

Step 6. Start the tree HAFP which has the root 
Null. 

Step 7. Browse the database obtained in Step 1, 
omit the items that do not exist in L1. Arrange the 
items in the transactions in Step 4. 

Step 8. Insert the transactions that have been 
arranged into the following tree HAFP as in these 
steps: 

Step 8.1. In the transaction of appearance there is 
an element which has existed in the tree HAFP. 
Computing the values: multiple the item I’s value to 
the value of the first item of the node’s “parent”, then 
plus the value of the corresponding element of the 
array (called expArr). 

Step 8.2. In contrast, adding a new node 
corresponding to the tree. Calculating the values: 
Multiple the item's value to the value of the first item of 
the node’s “parent”, then plus the values of the 
corresponding element of the array (called expArr). 
Insert the similar links to the FP-tree algorithm [3]. 

B. Algorithm to find the common set HAFP-Growth [6] 

After constructing fuzzy HAFP trees, we use the 
algorithm HAFP-Growth to find the common set. 

Input: The fuzzy tree HAFP, Header_Table, the 
support Min_Sup 

Output: The common set 
Solve each item in Header_Table in order from the 

bottom to the top.  
Step 1. Find all the nodes with items which are 

being processed I in the tree HAFP. 
Step 2. Extract full of item set with the expected 

count from the array expAry(K) in each node K 
in Step 1. 

Step 3. Compute the expected count of the same 
ItemSets. 

Step 4. If ItemSets in Step 3 has the the value 
more than or equal to Min_Sup, these ItemSets 
will be taken to the common set. 

Step 5. Repeat the Step 1 to Step 4 with the 
other items in Header_table until the last item is 
processed. 

Ending the Step 5, we obtain the entire the 
common set from the HAFP tree. 

IV. TEST EXAMPLES 

A. Build the tree hafp 

Transaction database in Table 1 is used in this 
example. This database contains 6 transactions and 6 

fuzzy properties. The minimum level of support is 
30%. We use a common hedge algebra X for the 
fuzzy attributes A, B, C, D, E, F. This hedge algebra 
includes generating element and two hedges shown 
follows: 

X =  (X, G, H, ≤) , where 𝐶−  =  {𝐿𝑜𝑤} , 𝐶+  =
 {𝐻𝑒𝑖𝑔ℎ𝑡} , 𝐻+ =  {𝑉𝑒𝑟𝑦} , 𝐻−  =  {𝐿𝑒𝑎𝑠𝑡} . With 
𝑓𝑚(𝐿𝑜𝑤)  =  𝑓𝑚(𝐻𝑒𝑖𝑔ℎ𝑡)  =  0.5 , 𝜇(𝑉𝑒𝑟𝑦)  =
 𝜇(𝐿𝑒𝑎𝑠𝑡)  =  0.5 , 𝐷𝑜𝑚(𝐴)  =  [0, 13] . Then 
𝑓𝑚(𝐿𝑒𝑎𝑠𝑡 𝐿𝑜𝑤)  = 0.25, 𝑓𝑚(𝑉𝑒𝑟𝑦 𝐿𝑜𝑤)  = 0.25, 
𝑓𝑚(𝐿𝑒𝑎𝑠𝑡 𝐻𝑒𝑖𝑔ℎ𝑡)  = 0.25, 𝑓𝑚(𝑉𝑒𝑟𝑦 𝐻𝑒𝑖𝑔ℎ𝑡)  = 0.25. 

We have the values: 𝑣(𝑉𝑒𝑟𝑦 𝐿𝑜𝑤)  = 0.125, 
𝑣(𝐿𝑒𝑎𝑠𝑡 𝐿𝑜𝑤)  = 0.375, 𝑣(𝐿𝑒𝑎𝑠𝑡 𝐻𝑒𝑖𝑔ℎ𝑡)  = 0.625, 
𝑣(𝑉𝑒𝑟𝑦 𝐻𝑒𝑖𝑔ℎ𝑡) = 0.875. 

TABLE I: TRANSACTION DATABASE 

TID A B C D E F 

1  7  12  10 

2  10  10  12 

3 2  9  1  

4 1  3 9 12  

5 4 9   9 12 

6 1  3  1 9 

Step 1: Fuzzy the transaction database. 

Apply the fuzzy method presented in Section 2.4, 
the database in the Table 1 is defuzzicated and give 
the results shown in Table 2. 

The attribute A has Dom(A)  =  [0, 13], the value of 
properties A in the range [0, 1] as follows: {0, 0, 0.15, 

0.08, 0.31, 0.08}. With v(Very Low)  = 0.125, 
v(Least Low)  = 0.375, v(Least Old)  = 0.625, 

v(Very Old)  = 0.875. For example, with A = 0.15: 
Because the value v(Very Low) < 0.15 < v(Least Low), 
we just calculate the distance between the 0.15 and 
the two respective fuzzy domains Very Young and 
Least Young, the fuzzy domains Least Height, Very 
Height has the value 0. The difference between 0.15 

and the fuzzy domain Very Young: 1 −  Abs(0.15 −
 0.125)  =  0.98. The difference between 0.15 and the 

fuzzy domain Least Young: 1 − Abs(0.15 −  0.375)  =
 0.78. Similarly, we have the transaction database that 
is defuzzicated as in the Table 2. 

Symbol: A1: A. Very Low; A2: A. Least Low; A3: 
A. Least Height; A4: A. Very Height; B1: B. Very Low; 
B2: B. Least Low; B3: B. Least Height; B4: B. Very 
Height; C1: C. Very Low; C2: C. Least Low; C3: C. 
Least Height; C4: C. Very Height; D1: D. Very Low; 
D2: D. Least Low; D3: D. Least Height; D4: D. Very 
Height; E1: E. Very Low; E2: E. Least Low; E3: E. 
Least Height; E4: E. Very Height; F1: F. Very Low; F2: 
F. Least Low; F3: F. Least Height; F4: F. Very Height. 

 

TABLE II: RESULTS THE TRANSACTION DATABASE IN TABLE  
AFTER FUZZYING BASED ON HEDGE ALGEBRA 

TID ItemSets 

1 B2=0.84; B3=0.92; D4=0.96; F3=0.86; F4=0.9; 

2 B3=0.86; B4=0.9; D3=0.86; D4=0.9; F4=0.96; 

3 A1=0.98; A2=0.78; C3=0.94; C4=0.69; E1=0.96; 

4 A1=0.96; D3=0.94; D4=0.82; E4=0.96; 

5 
A1=0.82; A2=0.94; B1=0.44; B3=0.94; B4=0.82; E3=0.94; 

E4=0.82; F4=0.96; 

6 A1=0.96; C1=0.9; C2=0.86; E1=0.96; F3=0.94; F4=0.82; 
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Step 2: Browse the database which has been 
completed in Step 1 to calculate the level of support 
expCount(I) and the frequency of appearance f(I). 

Frequency of appearance f (I) is the number of 
transactions contained I with the value that is not 
equal to 0. We have:  

TABLE III: TRANSACTION DATABASE IN THE TABLE I AFTER DEFUZZICATING BASED ON HEDGE ALGEBRA 

Item expCount Count Item expCount Count Item expCount Count Item expCount Count 

A1 3.72 4 B3 2.72 3 D1 0 0 E3 0.94 1 

A2 1.72 2 B4 1.72 2 D2 0 0 E4 1.78 2 

A3 0 0 C1 0.9 1 D3 1.8 2 F1 0 0 

A4 0 0 C2 0.86 1 D4 2.68 3 F2 0 0 

B1 0.44 1 C3 0.94 1 E1 1.92 2 F3 1.8 2 

B2 0.84 1 C4 0.69 1 E2 0 0 F4 3.64 4 

Step 3: With the minimum degree of support 30%, 
based on the degree of support expCount(I) is 
determined in 0. We can determine the common set 
L1= {A1:3.72; B3: 2.72; D4: 2.68; E1: 1.92; F4: 3.64}. 
Step 4: Sort L1 in descending the frequency of 

appearance of f(I), we can obtain L1 =
{A1: 3.72;  F4: 3.64;  B3: 2.72;  D4: 2.68;  E1: 1.92; }. 
Step 5: Based on L1 and Table 1, we construct the 
table Header_table as in Error! Reference source 
not found.. 

TABLE IV: HEADER_TABLE 

Item expCount Count 

A1 3.72 4 

F4 3.64 4 

B3 2.72 3 

D4 2.68 3 

E1 1.92 2 

Step 6: Initialize the tree HAFP which has the root Null. 

TABLE V: THE FUZZY DATABASE AFTER HAVING BEEN 
UPDATED 

TID ItemSets 

1 F4=0.9; B3=0.92; D4=0.96;  

2 F4=0.96; B3=0.86; D4=0.9;  

3 A1=0.98; E1=0.96;  

4 A1=0.96; D4=0.82;  

5 A1=0.82; F4=0.96; B3=0.94;  

6 A1=0.96; F4=0.82; E1=0.96; 

Step 7: Browse the database obtained in 0, remove the 

items which do not exist in L1. Sort the items in the 

transactions in order as in 0. We obtained a transaction 

database after updating as shown in Table 5. 

Step 8: After all of the transactions are processed, we obtain 

the tree HAFP as shown in Fig 1. 

 

Fig. 1: The tree HAFP 

B. Finding the common set 

To find common set, we carry out the following 
steps: 

Step 1: Browse items orderly one by one in 
Header_Table from the bottom to the top. The order to 
perform is respectively: E1, D4, B3, F4, A1. 

Step 2: The point E1 is carried out firstly, in the 
tree HAFP are 2 points E1.  

Step 3: The candidate sets of two points E1 is: 
A1E1: 0.9216, A1E1: 0.9216, F4E1: 0.7872, A1F4E1: 0.755712. 

 

TABLE VI: THE COMMON SET 

1- ItemSets 

A1 A1 

F4 F4 

B3 B3 

D4 D4 

E1 E1 

2- ItemSets 

A1E1 A1E1 

Step 4: Plusing the values of the same 
candidate sets, we obtain the sets of candidates as 

A1B3: 0.7708 

F4B3: 0.9024 

A1F4B3: 0.74 

1.86

𝐹4
 

NULL 

3.72

𝐴1
 

1.78

𝐵3
 

1.86

𝐷4
 

Item 

Header 

node-

Link 

A1 3.72 

F4 3.64 

B3 2.72 

D4 2.68 

E1 1.92 

 

0.96

𝐸1
 

1.78

𝐹4
 

0.96

𝐸1
 

0.94

𝐵3
 

F4B3: 1.6536 

F4D4: 1.728 

B3D4: 1.657 

F4B3D4: 1.53792 

A1D4: 0.7872 

A1F4: 1.5744 A1E1: 0.9216 

A1E1: 0.9216 

F4E1: 0.7872 

A1F4E1: 0.755712 

0.82

𝐷4
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follows: A1E1: 1.8432, F4E1: 0.7872, A1F4E1: 
0.755712. 

Step 5: With the minimum support of 30% (0.3 * 
6 = 1.8). The candidate sets in Step 4 have the value 
that are greater than or equal to 1.8, then they are put 
into common set. In this example A1E1: 1.8432 was 
put into common set. 

Step 6: Repeat with the other items in 
Header_Table, we obtain common as in the table 

V. CONCLUSION 

In this paper, we present methods of mining fuzzy 
association rules based hedge algebra’s approach, 
using data compression based on FP-tree for a 
database. With this approach, we used hedge algebra 
to fuzzy and represent the data after defuzzicating 
based on FP-tree. Compared with other methods, this 
method enables to minimize the number of points in 
the tree to help speed up finding common set. 

In the article we used the hedge algebra for the 
items with the same choosen parameters. To improve 
the efficiency of fuzzy mining association rules and to 
find the more meaningful laws, we need to optimize 
these fuzzy parameters which are suitable for each 
attribute, assign weights to the attributes. 
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