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Abstract— in this research by using numerical 
modeling, Flow pattern is investigated under the 
various flow conditions and basin geometry, in 
shallow basins. The government equations are 
shallow water equations and semi- lagrangian 
method is used to solve these equations. The 
results show that the proposed model acceptably 
Simulates flow behavior in the shallow rectangular 
basin. In addition, research on the effect of basin 
dimensional on flow pattern show that for the 
basin which aspect ratio (length to width) greater 
than 1.2, non-Symmetrical flow is established 
approximately. Otherwise, Flow pattern is 
symmetric in the rectangular basin. 
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I. INTRODUCTION  

Inflow velocity is reduced by increasing the flow 
cross section; and accordingly of sediment particles 
will deposit. Therefore, during designing the basin or 
reservoirs their tasks should be concentrate, e.g., in 
settling basin, sedimentation must to be maximum. 
But, in Dam reservoirs this volume must to be 
minimum. 

One of the important issues of sedimentation 
process in basins is Flow pattern. Consequently, flow 
pattern in rectangular basin, under the various flow 
conditions and basin geometry is investigated. 

Reference [1] studied flow patterns in several 
shallow rectangular basins. Their results show that the 
flow pattern might become asymmetric even if the 
inflow and outflow conditions were symmetric. 
Reference [2] studied flow patterns in rectangular 
basins by the lattice Boltzmann model. The results 
showed that their model could predict flow pattern with 
comparable accuracy with conventional method using 
an algebraic model for flow turbulence. Also, the 
results indicate by increasing Froude number and bed 
roughness, the flow patterns have less deviation from 
symmetric and the reattachment length increase. 
Reference [3] simulated symmetric and asymmetric 
flows in shallow rectangular basins with different lateral 

expansion ratios lengths. Comparison between 
simulated results and experimental data showed a 
good agreement of the critical shape parameter 
between symmetric and asymmetric flows. 

II. GOVERNING EQUATIONS 

The depth-averaged, shallow water equations were 
applied for this study. These equations assume 
hydrostatic pressure distribution, a well-mixed water 
column, and a small depth to width ratio: 
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Where U is the depth-averaged x-direction velocity 
component, V is the depth averaged y-direction 
velocity component, η is the free surface elevation, g 
is the gravitational constant, t is time, ε is the 
horizontal eddy viscosity coefficient, H is the total 
water depth, h is undisturbed water depth, n is 
Manning’s roughness coefficient and ,as shown in the 
fig. 1, H = η + h.  

 

 
Fig. 1. Schematic of flow in computational grid  
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III. NUMERICAL MODELING 

As shown in fig. 1, free surface elevation, η, is 
defined at the center of each computational cell. Total 
water depth, H, and directional velocity components, U 
and V, are defined at the midpoint of volume faces. 
Undisturbed water depth, h, is also defined at the 
midpoint of volume faces. The finite volume structure 
provides a control volume representation that is 
inherently mass conservative [4]. 

The combination of an implicit free surface solution 
and a semi-Lagrangian representation of advection, 
provide advantages of a stable solution. In the implicit 
process, the free surface elevation in the momentum 
equations, equations (1 and 2), and the velocity 
divergence in the continuity equation, (3), is treated 
implicitly. The advective terms in the momentum 
equations are discretized explicitly. The continuity 
equation is discretized as follows: 
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Where, (i, j) subscript is spatial location and the 
superscript, N or N +1, represents the temporal 
location, Δx and Δy represent the x and y direction 
volume lengths respectively, Δt is the computational 
time step duration. The numerical approximations with 
conservation of momentum equations, give the 
following equations: 
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Where, the FU and FV terms are the semi-
Lagrangian advection operators. A semi-Lagrangian 
advection method employs a Lagrangian algorithm 
across the underlying Eulerian model grid. The 
Lagrangian component of the scheme traces the path 
line of a particle which is initially located at the volume 
face, that is the velocity definition location from fig. 1 
going backwards along the particle path line a distance 
corresponding to the simulation time step duration, Δt, 
is obtained. The particle departure point is the location 
of the particle at the beginning of the current time step. 
Again, this location is obtained by tracing the particle 
backwards along the path line [5]. The method is only 
semi-Lagrangian, and partially Eulerian, because the 
velocity value at the departure point is obtained by 
interpolation from the surrounding, known velocity 
values defined on the Eulerian grid. 
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In (7) and (8), the subscript sLbicubic denotes bicubic 
interpolation from the underlying Eulerian grid at the 
departure point. In the viscous terms, ε is the 
horizontal eddy viscosity which is set as a fixed value. 
The subscripts on the velocity terms in the viscous 
terms denote the location on the Eulerian grid relative 
to the departure point. (i + 1/2 - a; j - b) in (8) where a, 
a = U Δt/Δx, is the x- direction Courant number 
rounded down and b, b = V Δt/Δy, is the y- direction 
Courant number rounded down. 

In this article, One-step, first order, explicit Euler 
schemes are used for path line tracing. Equations (9) 
and (10) provide the particle location at the end of 
each partial time step using the Euler method. the 
subscript b on the time level denotes bilinear 
interpolation. equation (11) generates the partial time 
step duration.                                                                                                                                                      
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IV. SOLUTION METHOD AND BOUNDARY CONDITIONS 

Equation (4) has three unknowns, ηN+1, UN+1, and 
VN+1. Substituting UN+1, and VN+1 respectively from (5) 
and (6) results in an equation which has only free 
surface elevations as the unknowns. Arranging the 
unknowns, N+1 terms, on the left side and the knowns, 
N terms, on the right side provides the system of 
equations for free surface elevation. This system is 
penta-diagonal, positive definite and is solved with the 
preconditioned conjugate gradient method [6]. 

The total water depth is the sum of the free surface 
elevation, ηi,jN+1 or ηi+1,jN+1 with the undisturbed water 
depth, hi+1/2,j.  
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Closed boundaries are boundaries that do not allow 
water flow while open boundaries are simulation 
domain boundaries which water may flow across them. 
Closed boundaries do not need specification in 
proposed model, because (12) and (13) will determine 
the closed boundary locations in the simulation 
domain. However, open boundaries must be specified. 

 

V. VERIFICATION OF PROPOSED MODEL 

The results of proposed model were verified by 
Experimental data, as in [1]. These experimental tests 
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have been conducted in a rectangular shallow basin. A 
rectangular inlet shape with maximum dimensions is 
6m in length and 4m in width, as sketched in fig. 2. 
The flow patterns for eight different values of basin 
width (B) and lengths (L) of basin (Table 1) have been 
analyzed. In all cases, the flow rate (Q) is 7.0 lit/s and 
the downstream water level (h0) is 0.2m. 

The cross-sectional distribution of the specific 
discharge is definite with a linear variation along the 
width of the inlet channel: 

  0 1 2inq y q q y b                                                        (12)  

Where qin (m2/s) denotes the actual value specific 
discharge of inflow boundary condition, q0 (m2/s) is the 
reference value (total discharge divided by channel 
width) and q1 (m2/s) measures the magnitude of the 
linear variation. b (m) is the width of the inlet channel 
and y(m) is the transverse coordinate, varying between

−b/2 and b/2. 

For comparing symmetric and non-symmetric 
results, quantitative indicator [1] is used. The indicator 
is defined in non-dimensional form as follows: 
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U = Q/(Bh0), where h0 (m) corresponds to the water 
depth at the downstream boundary condition, Q (m3/s) 
is the total discharge and B (m) the basin width. 

In fig. 3, under test Num. 1 conditions and 
q1/q0=0.02, the volume of m proposed model with 
numerical and experimental model are compared, as 
in [1]. The Results shows that despite the asymmetry 
less than the laboratory model, there are good 
agreements between proposed model and other 
models results. 

 

TABLE I.  GEOMETRIES OF EXPERIMENTAL MODEL [1] 

Test no. 1 2 3 4 5 6 7 8 

B 4.0 4.0 4.0 4.0 3.0 2.0 1.0 0.5 

L 6.0 5.0 4.0 3.0 6.0 6.0 6.0 6.0 

 

 
Fig. 2. Plan view of the experimental rectangular basin [1] 

 

Fig. 3. Comparison between Non-dimensional moment 
(m) of the flow field in the rectangular basin of by 4m 

(a) 

 
(b) 

 
 (c) 

 
(d) 

 

 
Fig. 4. Comparisons of streamwise velocities at (a) x =1.5 

(b)  x =2 (c)  x =3 (d)  x =4 m 

Fig. 4 presents the measured and simulated u 
component of the velocity in four different cross-
sections in the basin. It seems that proposed model 
results in determining the position and magnitude of 
maximum velocity is better than numerical predictions, 
as in [1]. 

 

VI. SENSITIVE ANALYSIS 

In order to determine the effects of basin length on 
the flow pattern, the proposed model was executed for 
constant basin width (4m) and different basin lengths 
(from 3 to 6m). As shown in fig. 5, for L/B>1.2 
approximately. Flow pattern is Asymmetric. Also, for 
L/B≤1.2, Symmetrical flow is established. 

Similarly, in order to determine the effect of basin 
width on the flow pattern, the proposed model was run 
for constant basin length (6m) and a width length 
increase from 0.5 to 4 m. as shown in fig. 6, All 
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configurations lead to a non-symmetrical flow pattern, 
except the narrowest one, namely B = 0.5m, which is 
consistent with previous results. It should be noted that 
all of above conclusions are in agreement with 
experimental results [1]. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5. Flow Pattern in the basin 4m width and (a) 3m 
length (b) 4m length (c) 5m length (d) 6m length 

To evaluate the influence of roughness coefficients 
on the flow patterns within the rectangular basin. The 
proposed model was run for three different Manning's 
Roughness Coefficients, n=0.007, 0.01and 0.014. The 
results show that Asymmetry of flow pattern decrease 
with the increase bed friction (see fig. 7). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 6. Flow Pattern in the basin 6m length and (a) 0.5m 
width (b) 1m width (c) 2m width (d) 3m width 

 

 

Fig. 7. Asymmetrical moment distribution, m, for different 
Manning’s roughness coefficient 
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VII. CONCLUSION 

The semi-lagrangian method has been applied to 
simulation of flow pattern in rectangular shallow 
basins, and the following conclusions can be drawn. 

The results of proposed model have been 
compared with experimental and numerical models. 
The results show that the proposed model can predict 
flow pattern in rectangular basin satisfactorily. Also, 
investigations showed that if basin aspect ratio (length 
to width) was greater than 1.2, non-Symmetrical flow 
would establish. Otherwise, Flow pattern would be 
symmetric in the rectangular basin. 

Finally, the effect of bed friction on flow pattern has 
been studied. Research indicates that Asymmetry of 
flow pattern decrease with the increase bed friction. 
However, these results may be valid only for the 
studied range of bed-friction values considered. 
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