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Abstract—The optimal spacing between finned 
tubes cooled by free convection is studied 
numerically. A row of isothermal finned tubes are 
installed in a fixed volume and the spacing 
between them is selected according to the 
constructal theory (Bejan's theory). In this theory 
the spacing between the tubes is chosen such 
that the heat transfer density is maximized. A 
finite volume method is employed to solve the 
governing equations; SIMPLE algorithm with 
collocated grid is utilized for coupling between 
velocity and pressure. For the numerical results, 
the range of Rayleigh number is (103 ≤ Ra ≤ 105), 

the range of the tube position is (0.25 ≤  ≤ 0.75), 
and the working fluid is air (Pr =0.71). 
Experimental study is also carried out in order to 
demonstrate the existence of the optimal spacing. 
The experimental Rayleigh number is (Ra =𝟑. 𝟖 ×
𝟏𝟎⁴) and the tube position of the finned tube is 
(0.667) .The numerical results show that the 
optimal spacing decreases as Rayleigh number 
increases for all tube positions, and the maximum 
density of heat transfer increases as the Raleigh 
number increases for all tube positions and for 
Ra=105 the highest value of heat transfer density 

occurs at tube position ( =0.75) while the lowest 

value occurs at tube position ( =0.25). The results 
also show that the optimal spacing remains 
constant with change of the tube position at 
constant Rayleigh number, and the agreement 
between the experimental and numerical heat 
transfer density is qualitative. 

Keywords—Constructal theory, optimal 
spacing, finned tubes, natural convection 

Nomenclature  

b Position of the tube (m) 
d diameter of the tube (m) 
D Non-dimensional diameter of the tube 
g Gravity acceleration (m/s2) 
h Total height of fin and tube (m) 
Hd Dimensionless downstream extension 
Hu Dimensionless upstream extension 
k Thermal conductivity (W/m.k) 
L Total length of the domain (m) 

𝐿𝘧 Fin length (m) 
p Pressure (N/m2) 
P Non-dimensional pressure 
Pr Prandtl number 
q Heat transfer rate (W) 
Q Dimensionless heat transfer density 

Ra Rayleigh number 
s Spacing between the tubes (m) 
S Dimensionless Spacing  
t Temperature (oC) 
T Dimensionless temperature 
Tw Wall temperature (oC) 
T∞ Ambient temperature (oC) 
u Horizontal velocity (m/s) 
U Dimensionless horizontal velocity 
v Vertical velocity (m/s) 
V Dimensionless vertical velocity 
V Volume (m3) 
w Width (m) 
x Horizontal Coordinate (m) 
X Dimensionless Horizontal Coordinate 
y Vertical coordinate (m) 
Y Dimensionless vertical coordinate 
 
Greek Symbols 
α Thermal diffusivity (m2/s) 
β Coefficient of thermal expansion (K-1) 

 Dimensionless position of tube 
ρ Density (Kg/m3) 

 Kinematic viscosity (Pa.s) 
 
Subscripts  
Max Maximum value 
Opt Optimum value 
 

1. Introduction 

In heat transfer, constructal theory (Bejan's theory) 
is used to generate the flow configuration by 
optimizing the heat transfer density under (space) 
volume constraint. Constructal theory states that the 
flow configuration is free to morph in the follow-up of 
maximal global performance (objective function) under 
global constraints, Bejan A. and Lorente S., (2008), 
[1]. By depending on constructal theory, the optimal 
spacing between plates and cylinders cooled by 
natural convection can be found, in each geometry, 
the total volume is fixed and the objective is to 
maximize the overall thermal conductance between 
the tubes. Bejan A., (1984), [2] found the optimal 
spacing between vertical plates installed in a fixed 
volume by using the intersecting of asymptotes 
method. The study was employed for isothermal 
vertical plates cooled by natural convection. He found 
that the optimal spacing was proportional to the 
Rayliegh number to the power of (-1/4). Bejan A. et al. 
(1995), [3] carried out a numerical and experimental 
study of how to choose the spacing among horizontal 
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cylinders installed in a fixed volume cooled by laminar 
free convection. They maximized the total density of 
heat transfer between the assembly and the ambient. 
The Numerical and experimental simulations cover 
the Rayleigh number range of 10⁴ ≤ Ra ≤ 10⁷and Pr = 
0.72. Ledezma G. A. and Bejan A., (1997), [4] 
investigated numerically and experimentally the free 
convection from staggered vertical plates installed in 
fixed space. They maximized the density of heat 
transfer and they considered three degrees of 
freedom; the horizontal spacing between adjacent 
columns, the stagger between columns and the plate 
dimensions. Numerical and experimental simulations 
cover the Rayleigh number range of 10³ ≤ Ra ≤ 10⁶, 
and the working fluid was air with Pr=0.72. The 
conclusion demonstrated numerically and 
experimentally that it was possible to optimize 
geometrically the internal architecture of a fixed 
volume such that its global thermal resistance was 
minimized. Da Silva and A. Bejan,(2004),[5] studied 
numerically the free convection in vertical converging 
or diverging channel with optimized for density of heat 
transfer. They considered three degrees of freedom: 
the distribution of heat on the wall, wall to wall 
spacing, and the angle between the two walls. The 
optimization was performed in the range of 10⁵≤ Ra ≤ 
10⁷and Pr=0.7. The walls were partially heated either 
at top of the channel or at the bottom of the channel. 
They proved that the density of heat transfer 
increased by putting the unheated part at the upper 
sections. They also showed that the best angle 
among the walls was almost zero when Ra number 
was high. Da Silva A. K. and Bejan A., (2005), [6] 
designed numerically a multi-scale plates geometry 
cooled by free convection by using constructal theory. 
They maximized the density of heat transfer rate. 
They put small plates in the unused heat transfer area 
between the large plates. They used finite element 
method to discretize the governing equation in the 
range of Rayleigh number of 10⁵≤ Ra ≤ 10⁸, and Pr= 
0.7. They showed that the density of heat transfer 
increased by putting the small plates between the 
large plates. Da Silva A.K. et al. (2005), [7] studied the 
free convection from discrete heat sources placed in 
vertical open channel with the constructal theory. 
They considered two cases, the first was single heat 
source under variable size, and the second was heat 
sources with fixed size. They applied the constructal 
theory to maximize the thermal conductance between 
the cold air and the discrete heat sources or to 
minimize the hot spot on the hot sources. Rayleigh 
number was in the range of (10² ≤ Ra ≤ 10⁴) and Pr = 
0.7. They showed that for case one the thermal 
performance can be maximized as the heat source 
not covering the entire wall at Ra =102 and 103. Bello-
Ochende T. and Bejan A., (2005), [8] designed 
numerically a multi-scale cylinders geometry cooled 
by free convection by using constructal theory. They 
maximized the density of heat transfer rate. They put 
small cylinders in the unused heat transfer area 
between the large cylinders. They used finite element 
method to discretize the governing equation in the 

range of Rayleigh number of 10⁵≤ Ra ≤ 10⁸, and Pr= 
0.7. They showed that the density of heat transfer 
increased by putting the small cylinders between the 
large cylinders. Page L. et al., (2011), [9] investigated 
numerically the free convection from single scale 
rotating cylinders. They used the constructal theory to 
maximize the density of heat transfer rate. The range 
of Rayleigh number was (101 ≤ Ra ≤ 10⁴), the range of 
rotating speed was (0≤ ω̃ₒ ≤10), and the fluid was air 
(Pr=0.7). They found that the optimized spacing 
decreases as Rayleigh number increases and the 
heat transfer density increases. Page L. et al. (2013), 
[10] investigated numerically the free convection from 
multi-scales rotating cylinders. They used constructal 
theory in order to find the optimal arrangement of the 
geometry. The range of Rayleigh number was (10² ≤ 
Ra ≤ 10⁴), the range of rotating speed was (0 ≤ ω̃ₒ ≤ 
10), and the fluid was air (Pr=0.7). Small cylinders 
were put in the unused regions of heat transfer. They 
found that there were no effects of the rotating 
cylinders on heat transfer density in compare with the 
stationary cylinders except at high speeds of rotation. 
It is obvious from the literature that there is no attempt 
to find the optimal spacing between finned tubes 
cooled by free convection with constructal theory, so 
that the present study uses the constructal theory to 
find the optimal spacing numerically. 

2. Mathematical Model 

Consider a row of finned tubes installed in a fixed 
volume per unit depth (h L) as shown in figure (1). 
Longitudinal fins are attached to the tubes and the 
total height of the tube and fin is (h), the diameter of 
the tubes is half of the total height (d=h/2). Three 
different vertical positions of the tube with respect to 
the fin (b) are considered as (b=0.25h, 0.5h, and 
0.75h). Fin thickness is negligible in compare with the 
diameter of the tube. The position of the tube as a 

ratio is defined as ( =b/h). The tubes and the fins are 
maintained at constant wall (hot) temperature of (Tw), 
and the ambient temperature is maintained at 

constant temperature of ( 𝑇∞ ). The objective is to find 
the number of tubes or the tube – to – tube spacing 

(s) for different tube positions ( ) in order to maximize 
the density of heat transfer. In this geometry there are 
two degrees of freedom, the first is the spacing 
between the tubes (s) and the second is the tube 

position ( ). The dimensionless governing equations 
for steady, laminar, two dimensional and 
incompressible flow with Boussinesq approximation 
for the density in the buoyancy term can be written as; 
Zhang Z. et al. (1991), [11] 
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The non-dimensional variables and groups used 
are; 
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∝  𝜐
 (5)  

 

Figure (1) Physical Geometry of the Present 
Problem 

Since the flow is symmetrical between the tubes, 
only half of the flow channel between two tubes can 
be used to find the spacing in the numerical solution. 
Half of the flow channel is shown in figure (2). The 
total height of the channel is (Hu+H+ Hd), the 
upstream height (Hu) and downstream (Hd) are added 
to avoid the applying of incorrect velocity and 
temperature at the inlet and outlet of the channel, 
these extension (Hu, Hd) are selected according to 
accuracy tests as shown later.  

The flow and thermal dimensionless boundary 
conditions on the half channel are shown in figure (2) 
and can be summarized as; 

Tube and fin surfaces ( 0 ≤ 𝑌 ≤ 𝐻) (no slip and no 

penetration and constant wall temperature 𝑈 = 𝑉 =
0 , 𝑇 = 1 ) 

Channel inlet (0 ≤ 𝑋 ≤  (
𝑆+𝐷

2
)) (𝑈 =

𝜕𝑉

𝜕𝑌
= 0 , 𝑇 =

0 , 𝑃 = 0) 

Channel exit (0 ≤ 𝑋 ≤  (
𝑆+𝐷

2
)) (

𝜕(𝑈,𝑉,𝑇)

𝜕𝑌
= 0 , 𝑃 = 0 ) 

Left and right sides of the upstream section (−𝐻𝑢 ≤

𝑌 ≤ 0 ) (free slip and no penetration 𝑈 =
𝜕𝑉

𝜕𝑋
= 0 ,

𝜕𝑃

𝜕𝑋
=

0 ,
𝜕𝑇

𝜕𝑋
= 0 ) 

Left side of the downstream section ( 𝐻 ≤ 𝑌 ≤ 𝐻 +

𝐻𝑑) (free slip and no penetration 𝑈 =
𝜕𝑉

𝜕𝑋
= 0 ,

𝜕𝑃

𝜕𝑋
=

0 ,
𝜕𝑇

𝜕𝑋
= 0 )  

Right side of the downstream section ( 𝐻 ≤ 𝑌 ≤

𝐻 + 𝐻𝑑) (zero stress 
𝜕(𝑉,𝑈)

𝜕𝑋
= 0,

𝜕𝑃

𝜕𝑋
= 0 ,

𝜕𝑇

𝜕𝑋
= 0 )  

The right side of the downstream boundary 
condition is applied to permit fluid to enter the domain 
horizontally in order to avoid the vertical acceleration 
which generated by chimney effects, Bello-Ochende 
T. and Bejan A.,(2005), [8].  

 

Figure (2) Dimensionless Boundary Conditions on 
the Flow Channel  

 3. Optimization of Heat Transfer (Maximum 
Heat Transfer Density) Based on Constructal 
Theory 

The spacing between the tubes is to be chosen 
such that the heat transfer density (objective function) 
is maximized. The heat transfer density is the heat 
transfer rate per unit volume and given as;  

𝑞‴ =  
𝑞

𝑉
=

𝑞

(𝑠 + 𝑑)ℎ𝑤
=

𝑞′

(𝑠 + 𝑑)ℎ
 (6) 

Where q′ = Total heat transfer rate from one tube 
per unit width. 

The heat transfer density can be written in non-
dimensional form as; 

 𝑄 =
𝑞′ ℎ2

𝑘 (𝑇𝑤−𝑇∞)(𝑠+𝑑)ℎ
 (7) 

 𝑄 =  
−(∫  𝑘

ℎ
0

𝜕𝑡 

𝜕𝑥  𝑑𝑦 )ℎ

𝑘(𝑇𝑤−𝑇∞)(𝑠+𝑑)
 =

− ∫  
1

0
𝜕𝑇

𝜕𝑋
 𝑑𝑌

(𝑆+0.5)
 (8) 

The objective function (heat transfer density) 
subjected to the constraint that the total volume per 
unit width is fixed. (This is based on constructal law) 

∴ ( ℎ 𝐿) = Constant (9)  
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4. Experimental Apparatus:  

In order to find the optimal spacing between finned 
tubes experimentally a rows of heated finned tubes 
are installed in a fixed volume. Figure (3) shows the 
main parts of the rows used in the experiments. In all 
experiments the tubes are placed is fixed volume of 
(H=27 mm, L=150 mm, and w=102 mm), these 
dimensions are chosen according to, Bejan et al. 
(1995). In order to ensure 2D flow and laminar 
Rayleigh number. Three rows of finned tubes are 
manufactured from circular copper tubes and copper 
plates for the experiments, the first row consists of 5 
tubes, the second row consists of 4 tubes, and the 
third row consists of 3 tubes. The spacing between 
the tubes in the first row is (2.7 mm) which 
corresponds to (S=s/l= 0.11), the spacing between the 
tubes in the second row is (10 mm) which 
corresponds to (S=s/l=0.37), and the spacing between 
the tubes in the third row is (24 mm) which 
corresponds to (S=s/l=0.88). The three assemblies of 
tubes are shown in plate (1). In order to minimize the 
heat loss from the tube ends, the tubes are held 
between two vertical wooden walls as shown in plate 
(1), Bejan et al. (1995). The assembly is placed in 
open top and bottom ends Perspex enclosure of 
height (1m) and cross section of (0.42m x 0.42m), to 
minimize the radiation losses the walls of the 
enclosure are covered with aluminum foils as shown 
in plate (2). Each cylinder has fixed dimensions (D= 
18 mm and L= 170 mm) and welded with a plate fin 

(𝐿𝘧= 9 mm and L= 170 mm), the soldering material 
which used to join cylinders with the fin plates are 
made from the same material (copper). In all 
experiment the fin is attached on the bottom of tube 
with tube position (δ= 0.667) (fin to tube diameter ratio 
is 0.5). 

To heat the tubes a cartridge heaters of 12 mm 
diameter and 300 Watts are installed inside the tubes. 
These heaters are placed concentrically inside the 
tubes by using two rings at each ends of the tubes, 
Bejan et al. (1995). The gaps between the heaters 
and the tubes are filled with the magnesium oxide 
powder. The heaters are connected in parallel and 
supplied by variable transformer which used to control 
the electrical power, Bejan et al. (1995). The current 
and the voltage are measured by using (Digital Clamp 

Meter UNI-T UT200A with accuracy ±(1.5% +5)) .The 
uniform in temperature on the tube wall is firstly 
checked by six T-type thermocouples (calibrated with 
a mixture of ice and water) which located on the 
positions shown in figure (4). The tube is then rotated 
to change the position of the thermocouples, Bejan et 
al. (1995). The temperature is practically uniform 
when the maximum difference in the six locations 
about (0.3oC). The temperatures (Tw1) and (Tw2) are 
measured in the mid-plane of the row in the locations 
shown in figure (5), as steady state is attained the 
maximum temperature registered is (Tw1) which used 
in the calculation of heat transfer density as shown 
later.  

 

Figure (3) Details of the main parts of the rows 
used in the Experimental Apparatus 

 

Figure (4) Position of the thermocouples on the 
finned tubes 

 

Figure (5) Position of the thermocouples for (Tw1) 
and (Tw2) used in calculating heat transfer density. 

 

𝑠 𝑙⁄  = 0.11 
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𝑠 𝑙⁄  = 0.37 

 

𝑠 𝑙⁄  = 0.88 

Plate (1) Rows of Heated Finned Tubes 

 

 

Plate (2) Enclosure 

5. Experimental Procedure and Calculations: 

The first run (experiment for the row of 5 tubes) is 
started by supplying the electric power to the heaters 
to heat the finned tube. After the steady state  

attained which takes about 6-8 hours, the 

temperatures (Tw1, Tw2 T∞), the current, and the 
voltage are recorded. The steady state is attained 
when the percentage change in Tw, voltage, and 

current is less than 0.6%, 0.2% and 0.2% 
respectively. 

The second experiment (4 tubes) and the third 
experiment (3 tubes) are conducted by adjusting the 
current in order to obtain the same temperature of the 
first experiment (𝑇𝑤1) to make all the three 
experiments conducted at the same Rayleigh number. 

6. Numerical Procedure, Grid Independence 
Test, and Validation 

A FORTRAN program is written to solve the 
algebraic equations which obtained by the finite 
volume method. The general transport equation is 
firstly transformed to curvilinear coordinates and the 
convective term is discretized by hybrid scheme while 
the diffusion term is discretized by second order 
central scheme. For coupling between the pressure 
and velocity SIMPLE algorithm is employed. To 
prevent the oscillation in the pressure field the 
interpolation method of Rhie, C. M., and Chow, W. L., 
(1983), [12], is used. The solution algorithm can be 
summarized as; 

1- Solve the discretized momentum equations to 
find the velocity field. 

2- Solve the pressure correction equation to find 
the corrected pressure. 

3- Correct the velocity field by using the corrected 
pressure. 

4- Solve the discretized energy equation to find the 
temperature. 

5- Repeat the steps (1-4) until convergence 
attained. 

6- Find the heat transfer density from equation 8. 
The grid independence test is performed for three 

grids for configuration at which (Ra = 104,  =0.25, 
and S = 0.3). The grid independence test showed that 
the increasing of the grid size decreases the error 

percentage, and the minimum error occurs at 50×50 
control volumes per (H). So this grid size is used and 
adopted in all the numerical results. Gird 
independence test is illustrated in table (1). A 
generated grid for control volumes of (175x50) in the 
whole domain is illustrated in figure (6). To apply the 
correct velocity and temperature at the inlet and outlet 
of the channel, the upstream extension (Hu) is added 
at the inlet of the channel and downstream extension 
(Hd) is added at the outlet of the channel. It is 

observed from the table (2) for (Ra = 105,  =0.75, and 
S = 0.2) that the increasing in downstream extension 
to (Hd =3.5) and keeping the upstream at (Hu =0.5) 
leads to reduce the error in the heat transfer density to 
1.4%. Based on this test the value of (Hu=0.5) and (Hd 
=3.5) have been depended in all numerical 
results.The numerical results are validated by 
comparing the results of (Sopt) with the numerical 
results of Da Silva and Bejan,(2004), [6] for natural 
convection between vertical isothermal plates and 
with Bello-Ochende and Bejan, (2005), [8] for natural 
convection between isothermal cylinders. Both 
comparisons are carried out at (Ra =105). Good 
agreement can be shown in table (3) for both cases. 
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Table 1 Grid Independence Test for the Case (Ra 

= 104,  =0.25, and S =0.3) 

 
Table 2 Downstream Extension Test for the Case 

(Ra = 105,  =0.75, Hu =0.5 and S =0.2) 

 

Table 3 Comparison of the Numerical Results for 
(Sopt) with the Previous Results for Case Ra =105 for 
flat plate and circular tube. 

 
Figure (6) Generated Grid for CVs (175X50) 
 
7. Results and Discussion  
The numerical results are presented in this section 

for, temperature contours, optimal spacing, and 
density of heat transfer for different values of tube 

position (0.25 ≤  ≤ 0.75). The range of Rayleigh 
number is (103 ≤ Ra ≤ 105) and the working fluid is air 
with (Pr =0.71).  

Figure (7) shows the temperature contour as a 
function of the spacing between the tubes (S) for (Ra 

=103) and tube position ( = 0.25). For small spacing 

(𝑆  0.25) the downstream region is occupied by hot 
fluid at temperature same as the wall temperature (red 
region), this is due to that the small spacing between 
the tubes prevents the cold air to flow downstream 

and the air there still hot (overworked fluid). As the 

spacing between the tubes increases (S  0.25) the 
downstream temperature begins to decrease and 
become less than the wall temperature and this is 
clear from the appearance of the (orange, yellow and 
green) regions. At some spacing the thermal 
boundary layers from both sides are merged at the 
downstream region (the channel is fitted with the 
convective flow body) , at this spacing the heat 
transfer density becomes maximum and the spacing 
represents the optimal spacing, in this case (Sopt = 
0.35). Further increasing in spacing between the 
tubes leads to a cold fluid region to appear in the 
downstream as seen in the blue region (underworked 
fluid) for (S ≥ 1), this large spacing permits the 
ambient (cold) fluid to flow downstream and leads to 
decrease the heat transfer density since the thermal 
conductance between the tubes decreased. 

 
Figure (7) Temperature contour with various 

spacing between the tube for (Ra=103, Pr =0.7, and 

tube position  =0.25) 

As Rayleigh number increases to (Ra =105) same 
behavior of the temperature contour to that of (Ra 
=103) can be observed in figure (8) except that the 
optimal spacing here becomes smaller, note that (Sopt 
= 0.35 at Ra=103) while (Sopt = 0.1 at Ra =105), so as 
Rayleigh number increases the optimal spacing 
decreases because the thermal boundary layer 
thickness decreases with increasing of Rayleigh 
number. 

 

Figure (8) Temperature contour with various 
spacing between the tube for (Ra=105, Pr =0.7, and 

tube position  =0.25) 
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Figures (9, and 10) illustrate the temperature 

contours at ( = 0. 5) for Rayleigh numbers (103, and 
105), respectively. In can be seen from both figures 
that the thermal boundary layer thickness on the lower 
fin is thinner than the thermal boundary layer on the 
upper fin due to the presence on the tube in the mid 

position ( = 0. 5). 

 
Figure (9) Temperature contour with various 

spacing between the tube for (Ra=103, Pr =0.7,  

and tube position  =0.5) 
 
Figure (10) Temperature contour with various 

spacing between the tube for (Ra=105, Pr =0.7, and 

tube position  =0.5) 

 
Figure (11) Temperature contour with various 

spacing between the tube for (Ra=103, Pr =0.7, and 

tube position  =0.75) 

Figures (11, and 12) illustrate the temperature 

contours at ( = 0. 75) for Rayleigh numbers (103, and 
105), respectively. It is interesting to note that as the 

tube moves from the position ( = 0.25) to the position 

( = 0.75) the thermal boundary layer thickness on the 
fin surface becomes thicker as shown in figures (11, 
and 12) in compare with figures (8, and 9).  

 
Figure (12) Temperature contour with various 

spacing between the tube for (Ra=105, Pr =0.7, and 

tube position  =0.75) 
Figures (13 and 14) show the dimensionless heat 

transfer density as a function of the spacing at 

different Rayleigh numbers and for tube positions ( 
=0.25, and 0.75) respectively. These figures show that 
there is optimal value of spacing for each Rayleigh 
number. At this value of spacing the heat transfer 
density reaches its maximum value (tops of the 
curves). 

 
Figure (13) Heat Transfer Density with spacing at 

different Rayleigh numbers for tube position ( =0.25) 

 
Figure (14) Heat Transfer Density with spacing at 

different Rayleigh numbers for tube position ( =0.75) 
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Figure (15) shows the optimal spacing (Sopt ) 

versus Rayleigh number at tube position ( = 0,25), it 
is interesting to note that the optimal spacing 
decreases as Rayleigh number increases, as 
mentioned above the increasing of Rayleigh number 
reduces the thermal boundary layer thickness and 
thus the optimal spacing decreased.  

Figure (16) shows the maximum heat transfer 
density versus Rayleigh number at various tube 

position ( ), it can be noted that the maximum heat 
transfer density increases as Rayleigh number 

increases for all values of (), the increasing of 
Rayleigh number leads to increase the buoyancy 
force and thus increase the maximum heat transfer 
density. It also can be seen that at (Ra=105) the 
highest value of the maximum heat transfer density 

occurs at ( = 0.75) and the lowest value occurs at ( 
=0.25). This can be explained as the tube moves 

upward to ( = 0.75) the temperature gradient near the 
lower fin increases and thus the maximum heat 
transfer density increases. 

 
Figure (15) Optimal spacing with Rayleigh number 

for for tube position ( =0.25) 

 

Figure (16) Maximum heat transfer density with 
Rayleigh number for different axis ratios  

Figure (17) shows the optimal spacing versus the 
tube position of the tube at different Rayleigh 
numbers. The optimal spacing is constant for all 
values of the tube position. Since the optimal spacing 

is constant for all (), the number of tubes installed in 

a fixed volume is the same for all tube positions (). 

 

Figure (17) Optimal spacing with tube position for 
different Rayleigh number  

8. Experimental Results: 
Figure (18) shows the experimental heat transfer 

density (Qexp) as a function of the spacing (S) between 

the tubes for (Ra =3.8 × 10⁴) and for tube position of 

( = 0.667). This figure demonstrates the existence of 
the optimal spacing (Sopt) that maximizes the heat 
transfer density. The behavior of the experimental 
curve is similar to the numerical curve of the heat 
transfer density with spacing which shown in figure 
(13). The agreement between the experimental and 
numerical results is qualitative. Table (4) shows the 
comparison between the experimental optimal 
spacing and the numerical optimal spacing for 

Rayleigh number (Ra =3.8 × 10⁴) and tube position 
(δ= 0.667). The agreement between the experimental 
and numerical Sopt values (within 32 percent) is 
reasonable in view of the by-pass air flow from the 
sides of the row. The limitation in the experimental 
apparatus is the horizontal dimension (L), in the 
experiment a buoyant air is by-passed on the outside 
of the elemental channels and this is differing from the 

numerical model in which assumed that (LS) (so 
that in numerical model the by- pass air from the row 
sides is negligible). In the view of the mentioned by-
pass air the agreement between the experimental and 
numerical results is good.  

Table 4 Comparison between Numerical and 
Experimental Optimal Spacing (Sopt) at Ra =3.8 ×
10⁴and δ=0.667 

Sopt (Numerical) Sopt (Experimental) Error % 

0.25 0.37 0.32 

 

Figure (18) Experimental Heat Transfer Density 

with spacing at Ra= 3.8× 10⁴ for tube position ( 
=0.667) 
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9. Conclusions 

The conclusions for optimal spacing between 
finned tubes cooled by free convection can be 
summarized as:- 

1- The optimal spacing decreases as Rayleigh 
number increases for all tube positions. 

2- The maximum heat transfer density increases 
as Rayleigh number increases for all tube positions. 

3- At Ra=105, the highest value of the maximum 

heat transfer density occurs at tube position ( = 0.75) 

and lowest value occurs at tube position ( = 0.5). 
4- The optimal spacing remains constant as the 

tube position increases at constant Rayleigh number.  
5- The number of finned tubes installed in a fixed 

volume is the same for all tube positions. 
6- The behavior of the experimental heat 

transfer density (Qexp) and numerical heat transfer 
density (Q) is qualitative.  
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