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Abstract— This is a study of monthly natural
gas production in Nigeria as a time series. The
realization sampled and analyzed spans from
January 2008 to December 2015. Knowledge of the
trend of the production and a model which
adequately accounts for variability in the series
could be helpful for planning and administrative
purposes. The time plot shows a generally
increasing trend. It is observed that the series is
also seasonal of period 12 months. A non-
seasonal differencing of the series is stationary
and a first order moving average model is fitted to
it. That is, fitted to the original data is the Box-
Jenkins model, ARIMA(0,1,1). Taking advantage of
the seasonality of the series, a seasonal
differencing is done on the differenced series and
a SARIMA(0,1,1)x(0,1,1)12 model is fitted to the
original series. This latter model is found to outdo
the former in adequacy on all counts. In addition,
using the January to May 2016 data, with this
model, there is out-of-sample observation/forecast
goodness-of-fit. Therefore the latter model is
recommended as a basis for the forecasting or
simulation of the series.
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I. INTRODUCTION

Natural gas is a naturally occurring hydrocarbon
gas comprising mostly methane and, in lesser
proportions, the heavier hydrocarbons. Nigeria is
ranked seventh in the world and first in Africa in natural
gas production. The natural gas by-product of
petroleum drilling called associated gas (AG) is flared
due to inadequate infrastructure for its monetization. It
is being speculated that Nigerian natural gas reserve is
thrice as large as her crude oil reserve. Plans are
being put in place to bring gas flaring to the barest
minimum. By natural gas it is meant a combination of
AG and non-associated gas. The largest national
initiative in gas production is the National Liquefied
Natural Gas (NLNG) project manned by some foreign
oil companies and the Nigerian National Petroleum
Company (NNPC).
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Empirical study of natural gas production and
utilization in Nigeria has engaged the attention of many
researchers in recent times. For instance Audu [1] has
shown empirically that the utilization of natural gas in
Nigeria has positive impact on the economy. Gabriel et
al. [2] also observed a positive impact of the utilization
on the economy given a three-year time lag. Kareem
et al. [3] demonstrated that gas flaring has a negative
impact whereas gas production has a positive impact
on the economy. Using multiple regression Diugwu et
al. [4] showed that gas utilization impacted positively
while gas production and flaring impacted negatively
on the economy.

There is perhaps no time series analysis of the
production of gas in Nigeria. This work involves a time
series analysis of the monthly production. The
methodology adopted is the Box-Jenkins approach
which is an application of autoregressive integrated
moving average (ARIMA) modeling, of which seasonal
autoregressive integrated moving average (SARIMA)
modeling is a special case.

Box-Jenkins modeling since its introduction in the
1970’s has been extensively applied in time series
modeling. For example,Yu et al. [5] fitted an
ARIMA(2,2,1) to incidence of HIV infections in Korea.
Lin et al. [6] modeled injury mortality in Xiamen, China
as an ARIMA(0,1,1).

In the sequel an inspection shows that the
realization of the series being analyzed herein shows
annual seasonality. This has warranted the application
of SARIMA modeling, which has been widely applied
and successfully too, to many real-life time series. For
instance, Kim et al. [7] demonstrated the comparative
advantage of the use of SARIMA models over some
other kinds of models in the description of the catch of
anchovies in the Korean South Sea. Borhan and Arsad
[8] described tourism to Malaysia from the US, Japan
and South Korea by the use of SARIMA models. This
is just to mention only a few.

Il. MATERIALS AND METHODS
A. Data

The data for this work are monthly total natural gas
production in billions of standard cubic feet (BSCF)
from January 2008 to May 2016 from the NNPC
website
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www.nnpcgroup.com/nnpcbusiness/businessinformati
on/oilgasinnigeri.aspx. The data are from the Natural
Gas Production and Utilization subheading of the
MPI Figures of the Oil & Gas in Nigeria section. The
2008 to 2015 data shall be analyzed and the five 2016
values shall be reserved for out-of-sample
observation/forecast comparison.

B. Box-Jenkins Time Series Models

Box and Jenkins [9] defined an autoregressive
moving average model of order p and g, denoted by
ARMA(p, q) as

Xt - aaXe1 - a2Xtp - ... - OpXtp = &t + Prer1 + Pogt2 +...
+ Pagrq 1)

where X: is the value of a stationary time series {Xi} at
time t. Clearly p and q are integers and {et} is a white
noise process. The o’s and ’s are constants such that
model (1) is both stationary and invertible. If g=0 then
(1) is an autoregressive model of order p, denoted by
AR(p). If p=0 the model is a moving average model of
order q, denoted by MA(q). Model (1) may be put as

A(L)Xt = B(L)et

where A(L) =1 -a1'L-o02l?-...-aplPand B(L) =1 +
BiL + BaL2 + ... + BgL9 and L*X: = Xtk A(L) and B(L) are
respectively the autoregressive (AR) operator and the
moving average (MA) operator.

If the time series {X¢ is non-stationary, Box and
Jenkins [9] proposed that differencing of the series to
an appropriate degree might make it stationary.
Suppose d is the least positive integer such that the d™
difference of {Xi} denoted by {VX{} is stationary where
V=1-L. {Xi} is said to be I(d), and replacement of X: by
its d" difference in (1) yields an autoregressive
integrated moving average of order p, d, q, denoted by
ARIMA(p,d,q), in the original series.

If {Xt} is in addition seasonal, Box and Jenkins [9]
further proposed that, in order to capture the
seasonality, it might be modeled by

AL)D(LS)VIVOX: = B(L)O(LS)e: )

where s is the seasonality period, ®(L) = 1+¢p1L+¢poL%+
.. +¢pL” and O(L) = 1+01L+02L%+...+0qL° are the
seasonal AR and MA operators respectively, the ¢’s
and 0’s being constants such that the entire model is
stationary and invertible. V2 represents the D"
seasonal difference operator. Model (2) is called a
seasonal autoregressive integrated moving average
model of order p, d, q, P, D, Q, s denoted by
SARIMA(p, d, g)x(P,D,Q)s.

Box-Jenkins modelling involves first of all the
determination of the orders in (1) and (2). The AR
orders p and P are determined by the non-seasonal
and the seasonal cut-off lags of the autocorrelation
function (ACF). Their MA counterparts g and Q may be
estimated by the non-seasonal and the seasonal cut-

off lags of the partial autocorrelation function (PACF).
It is sufficient to choose the differencing orders d and
D such that their sum is at most for stationarity to be
attained. The seasonality period often suggestive
naturally or by an inspection of the series. Stationarity
might be ascertained by the use of Augmented Dickey
Fuller (ADF) test. Alternative models might be
compared using Akaike’s Information criterion (AIC).
The model might be estimated by the least squares
criterion.

C. Statistical Package

The statistical and econometric software Eviews 7
shall be used to do all the data analysis in this work. It
uses the least squares criterion for model estimation.

. RESULTS AND DISCUSSIONS

The time plot of the 2008-2015 realization, NNGP, in
Figure 1 reveals an overall upward trend. That is, as
time progresses the production of natural gas is on the
increase. Its ACF and PACF in Figure 2 are as
expected: autocorrelations from lags 1 to 6 are
statistically significant. A non-seasonal differencing
appears to have rid the series of the non-stationary
behavior. The differenced series DNNGP shows no
trend (See Figures 3 & 4). Besides the unit root test on
NNGP is non-significant amounting to a corroboration
of the null hypothesis of non-stationarity whereas the
same test on DNNGP is highly significant suggesting
that the
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FIGURE 1: NNGP
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FIGURE 2: CORRELOGRAM OF NNGP

series DNNGRP is stationary. That is, NNGP is I(1).
Moreover the correlogram of Figure 4 suggests an
MA(1) for DNNGP; that is, an ARIMA(0,1,1) for NNGP.
The model as summarized in Table 1 is given by

DNNGP; = -0.6847¢ 3)

An inspection suggests that NNGP is seasonal of
period 12 months. Yearly minimums are October, April,
January, February, August, May, April and February
respectively and the respective yearly maximums are
May, November, August, December, January,
December, October and September. It may be
observed that 6 out of 8 of the minimums are in the
first half of the year and 6 out of 8 of the maximums
are in the second half of the year. This is an indication
of a seasonal tendency of period 12 months. A 12-
monthly differencing of DNNGP yields the series
SDDNNGP whose time plot of Figure 5 suggests

100 stationarity and whose ACF in Figure 6 suggests a
75 SARIMA(0,0,1)x(0,0,1)12 model for SDDNNGP; that is,
50 | a SARIMA(0,1,1)x(0,1,1)12 model for NNGP.
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TABLE 1: ESTIMATION OF THE ARIMA(0,1,1)
MODEL

Dependent Variable: DNNGP
Method: Least Squares

Date: 10/16M16 Time:

19:59

Sample: 2008M01 2015M12
Included observations: 96

Convergence achieved after 7 iterations
MA Backcast: 2007M12

Autocaorrelation Partial Correlation

AC PAC

Q-Stat  Prob

P
2
3
4
5
&
7
8
]

10

11

12

13

14

15

16

17

18

=

1]

]

5
A - a-

I
il

g

05~
Oa

=

ISN=]
amm

20
21
22
23

(=

g

-0.032 -0.032
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0179 0166
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-0.229 -0218
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-0.042 -0.065

0.0900
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1.4387
1.7145
1.7194
4 8762
7.3896
12 367
14.548
15860
20.443
20.469
20522
20,700
20878
21712
23729
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26.394
27.139
29.108
29.316

0.190
0.423
0197
0.117
0.030
0.024
0.026
0.009
0.015
0.025
0.037
0.052
0.060
0.049
0.045

0.068
0.076
0.064
0.082

Wariable Coefficient Std. Error t-Statistic Prob.
MA(1) -0.684738 0.074514  -9.189330 0.0000
R-squared 0.321776 Mean dependent var 0.219271
Adjusted R-squared 0.321776 S.D. dependentvar 3915240
S.E. of regression 3224369 Akaike info criterion 9.794884
Sum squared resid 98767.31 Schwarz criterion 9621596
Log likelihood -469.1544 Hannan-Quinn criter. 9.8605682
Durbin-Watson stat 1.977050
Inverted MA Roots .68
TABLE 2: ESTIMATION OF THE
SARIMA(0,1,1)X(0,1,1)12 MODEL
Dependent Variable: SDDMMGP
Method: Least Squares
Date: 10/23/16 Time: 16:06
Sample (adjusted) 2009M01 2015M12
Included observations: 84 after adjustments
Convergence achieved after 14 iterations
A Backcast: 2007M12 2008012
Variable Coeflicient Std. Error t-Statistic Prob.
MA(1) -0.713440 0.069101  -10.32483 0.0000
MA(12) -0.921963 0.022958  -40.15795 0.0000
MA(13) 0.646179 0.069622 9281211 0.0000
R-squared 0.652505 Mean dependentvar 1479048
Adjusted R-squared 0.543925 5.D. dependentvar 49.50904
S.E. ofregression 2054305 Akaike info criterion 9644635
Sum squared resid 70696.15 Schwarz criterion 9.731450
Log likelihood -402.0747 Hannan-Quinn criter. 9679534
Durbin-Watson stat 2.051247
Inverted MA Roots 1.00 B6+.50i BE-.501 i
50+.86i .50-.86i1 00+99 .00-.99i
-.50-.86i -.50+.86i -86-.50i -.86+.50i
-99
TABLE 3: OUT-OF-SAMPLE OBSERVATION/FORECAST
COMPARISON
Time Observation Forecast
January 2016 241.92 243.62
February2016 202.64 220.47
March 2016 222.55 240.94
April 2016 250.03 242.72
May 2016 230.05 245.99
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The estimation of the model as summarized in

Table 2 yields

SDDNNGP: = -0.7134¢:1 — 0.9220gt12 + 0.6462¢13 + &
(4)

Clearly model (4) shows supremacy over (3). AIC
is lower with (4) than with (3). Moreover, R? is more
with (4) than with (3), R? being interpreted as the
proportion of variability in the dependent variable
explained by the model. Adequacy of model (4) is not
in doubt as its residuals are normally distributed (See
Figure 7) and are not correlated (See Figure 8).

Moreover in Table 3, there is very close agreement
between the out-of-sample observed values of January
to May 2016 and their corresponding forecasts based
on model (4). The chi-square goodness-of-fit test is not
significant with calculated test statistic of 4.1105 less
than the tabulated 5% significance critical value of
9.488 at 4 degrees of freedom. In fact, the p-value is
more than 0.3.

I1l. CONCLUSION

It may be concluded that monthly gas production in
Nigeria follows a SARIMA(0,1,1)x(0,1,1)12 model (4).
Even though Nigeria is known to be in the gas zone
with huge reserves of gas its production is limited
because some constraints of constraints like
infrastructural inadequacies and economic depression.
A model for predicting the future prospects would help
in strategic planning. Forecasting or simulation of the
production could therefore be done on the basis of the
model (4).
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