A Hybrid Forecasting Model Based On Automatic Clustering Algorithm And Fuzzy Time Series

Nghiem Van Tinh Thai Nguyen University of Technology, Thai Nguyen University Thai Nguyen, Vietnam

Abstract-In our daily life, people often use forecasting techniques to forecast real problems, such as forecasting stock market, forecasting enrolments, temperature prediction, population growth prediction, etc. In recent years, many researchers used fuzzy time series to handle prediction problems. When forecasting these problems based on fuzzy time series, it is obvious that the length of intervals in the universe of discourse is important because it can affect the forecasting accuracy rate. However, some of the existing fuzzy forecasting methods based on fuzzy time series used the static length of intervals, i.e., the same length of intervals. The disadvantage of the static length of intervals is that the historical data are put into the intervals in a rough way, even if the change of the historical data is not large. Therefore, the forecasting accuracy rates of the existing fuzzy forecasting methods are not good enough. Consequently, we need to propose a new fuzzy forecasting method to overcome the drawbacks of the existing forecasting models to increase the forecasting accuracy rates. In this paper, a hybrid forecasting model based on two computational methods, the fuzzy logical relationship groups and clustering algorithm, is presented for forecasting enrolments and the Taiwan Futures Exchange (TAIFEX). Firstly, we use the automatic clustering algorithm to divide the historical data into clusters and adjust them into intervals with unequal lengths. Then, based on the new intervals, we fuzzify all the historical data of the enrolments of the University of Alabama and calculate the forecasted output by the proposed method. Compared to the other methods existing in literature, particularly to the first-order fuzzy time series and high - order fuzzy time series using data sets: the historical data of the two enrolments of the University of Alabama and the stock index data set of TAIFEX, our method gets a higher average forecasting accuracy rate than the existing methods.

Keywords — Fuzzy time series(FTS), forecasting, fuzzy logical relationship groups (FLRG), clustering, enrolments.

Nguyen Thi Phuong Nhung

Thai Nguyen University of Technology, Thai Nguyen University Thai Nguyen, Vietnam

I. INTRODUCTION

It can be seen that forecasting activities play an important role in our daily life. Therefore, many more forecasting models have been developed to deal with various problems in order to help people to make decisions, such as crop forecast [6], [7] academic enrolments [1], [10], the temperature prediction [13], stock markets [14], etc. There is the matter of fact that the traditional forecasting methods cannot deal with the

forecasting problems in which the historical data are represented by linguistic values. Ref. [1], [2] proposed the time-invariant FTS and the time-variant FTS model which use the max–min operations to forecast the enrolments of the University of Alabama. However, the main drawback of these methods is enormous computation load. Then, Ref. [3] proposed the first-order FTS model by introducing a more efficient arithmetic method. After that, FTS has been widely studied to improve the accuracy of

forecasting in many applications. Ref. [4] considered the trend of the enrolment in the past years and presented another forecasting model based on the first-order FTS. He pointed out that the effective length of the intervals in the universe of discourse can affect the forecasting accuracy rate. In other words, the choice of the length of intervals can improve the forecasting results. Ref. [5] presented a heuristic model for fuzzy forecasting by integrating Chen's fuzzy forecasting method [3]. At the same time, Ref.[8] proposed several forecast models based on the highorder fuzzy time series to deal with the enrolments forecasting problem. In [9], the length of intervals for the FTS model was adjusted to forecast the Taiwan Stock Exchange (TAIEX). Ref. [11] present a new method for temperature prediction and the TAIFEX forecasting, based on high- order fuzzy logical relationships and genetic simulated annealing techniques.

Recently, Ref.[16] presented a new hybrid forecasting model which combined particle swarm optimization with fuzzy time series to find proper length of each interval. Additionally, Ref.[17] proposed a new method to forecast enrolments based on automatic clustering algorithm and high – order fuzzy logical relationships. In this paper, we proposed a hybrid forecasting model combining the time-invariant fuzzy relationship groups

and automatic clustering technique in [18].

In case study, we applied the proposed method to forecast the enrolments of the University of Alabama. Computational results show that the proposed model outperforms other existing methods.

Rest of this paper is organized as follows. The fundamental definitions of FTS and automatic clustering technique are discussed in Section 2. In Section 3, we use an automatic clustering algorithm combining the FTS for forecasting the enrolments of the University of Alabama. In Section 4 presents the results from the application of the proposed method to real data sets. Then, the computational results are shown and analyzed in Section 5. Finally, conclusions are presented in Section 6

II. FUZZY TIME SERIES AND AUTOMATIC CLUSTERING ALGORITHM

In this section, we provide briefly some definitions of fuzzy time series [1], [2], [3] in Subsection A and Automatic clustering algorithm in Subsection B.

A. Fuzzy Time Series

In [1], Song and Chissom proposed the definition of fuzzy time series based on fuzzy sets ,Let $U=\{u_1, u_2, ..., u_n\}$ be an universal set; a fuzzy set *A* of *U* is defined as $A=\{f_A(u_1)/u_1+...+f_A(u_n)/u_n\}$, where f_A is a membership function of a given set *A*, $f_A: U \rightarrow [0, 1]$, $f_A(u_i)$ indicates the grade of membership of u_i in the fuzzy set *A*, $f_A(u_i) \in [0, 1]$, and $1 \le i \le n$. General definitions of fuzzy time series are given as follows: **Definition 1**: Fuzzy time series

Let Y(t) (t = ..., 0, 1, 2 ...), a subset of R, be the universe of discourse on which fuzzy sets $f_i(t)$ (i = 1, 2...) are defined and if F(t) be a collection of $f_i(t)$) (i = 1, 2...). Then, F(t) is called a fuzzy time series on Y(t) (t ..., 0, 1, 2, ...).

Definition 3: Fuzzy logic relationship

If there exists a fuzzy relationship R(t-1,t), such that F(t) = F(t-1) * R(t-1,t), where "*" is an arithmetic operator, then F(t) is said to be caused by F(t-1). The relationship between F(t) and F(t-1) can be denoted by $F(t-1) \rightarrow F(t)$. Let $A_i = F(t)$ and $A_j = F(t-1)$, the relationship between F(t) and F(t -1) is denoted by fuzzy logical relationship $A_i \rightarrow A_j$ where A_i and A_j refer to the current state or the left hand side and the next state or the right-hand side of fuzzy time series.

Definition 4: λ - order fuzzy time series

Let F(t) be a fuzzy time series. If F(t) is caused by F(t-1), F(t-2),..., $F(t-\lambda+1)$ $F(t-\lambda)$ then this fuzzy relationship is represented by by $F(t-\lambda)$, ..., F(t-2), $F(t-1) \rightarrow F(t)$ and is called an λ - order fuzzy time series.

Definition 5: Fuzzy Relationship Group (FLRG)

Fuzzy logical relationships in the training datasets with the same fuzzy set on the left-hand-side can be further grouped into a fuzzy logical relationship groups. Suppose there are relationships such that

 $\begin{array}{l} A_i \rightarrow A_j \\ A_i \rightarrow A_k \end{array}$

So, these fuzzy logical relationships can be grouped into the same FLRG as : $A_i \rightarrow A_j$, A_k ...

B. An automatic clustering algorithm

A cluster is a set whose elements have the similar properties in some sense. Elements in the same cluster have the same properties while elements in different clusters have different properties. If the elements in a cluster are numerical values, then the smaller the distance (i.e., the difference) between two elements in the cluster, the higher the degree of similarity between these two elements.

In this section, we briefly summarize an automatic clustering algorithm to divived the numerical data into clusters. The algorithm is introduced in [18]. The algorithm is composed of the main following steps.

1. Sort the numerical data in an ascending order.

 $d_1, d_2, d_3, \dots, d_i, \dots, d_n$. with $d_{i-1} < d_i$ where d_1 is the smallest datum among the n numerical data, d_n is the largest datum among the n numerical data, and $1 \le i \le n$

- 2. Calculate the average distance *aver_dif* of the distances between every pair of neighboring numerical data in the sorted data sequence
- 3. Based on the value of *aver_dif*, determine wherever two adjacent numerical data d_i and d_j in the data sequence can be put into the current cluster or needs to be put it into a new cluster.

III. FORECASTING MODEL BASED ON AUTOMATIC CLUSTERING AND FUZZY TIME SERIES

An improved hybrid model for forecasting the enrolments of University of Alabama based on Automatic clustering technique and FTS. At first, we apply automatic clustering technique to classify the collected data into clusters and adjust these clusters into contiguous intervals for generating intervals from numerical data then, based on the interval defined, we fuzzify on the historical data determine fuzzy relationships and create fuzzy relationship groups; and finally, we obtain the forecasting output based on the fuzzy relationship groups and rules of forecasting are our proposed. The step-wise procedure of the proposed model is detailed as follows:

Step 1: Creating intervals from historical data of enrolments based on automatic clustering algorithm

Assume that the following clusters are obtained in Subsection B of part II as:

 $\{d_1, d_2\}; \{d_3, d_4\}; \{d_5, d_6\}; \dots; \{d_k\}; \dots; \{d_{n-1}, d_n\}.$

Transform these clusters into contiguous intervals based on the following Sub-steps:

Step 1.1: Transform the first cluster $\{d_1, d_2\}$ into the interval $[d_1, d_2)$

Step 1.2: set $\{d_1, d_2\}$ is the current interval and let $\{d_3, d_4\}$ is the current cluster

begin

if $(d_2 \ge d_3)$ then begin

transform the current cluster $\{d_3, d_4\}$ into interval $[d_2, d_4)$

set $[d_2, d_4)$ as the current interval, and set the next cluster $\{d_5, d_6\}$ as the current cluster

end; if $(d_2 < d_2)$ then

transform { d_3 , d_4 } into interval [d_3 , d_4) create a new interval [d_2 , d_3 } between [d_1 , d_2) and [d_3 , d_4) **set** [d_3 , d_4) is the current interval, and set the next cluster { d_5 , d_6 } as the current cluster.

```
end;
```

If the current interval is $[d_i, d_j)$ and the current cluster is $\{d_k\}$ **then**

begin

transform the current interval $[d_i, d_j)$ into interval $[d_i, d_k)$ set $[d_i, d_k)$ as the current interval, and set the next cluster as the current cluster.

end; end.

Step 1.3: Repeatedly check the current interval and the current cluster until all the clusters have been transformed into intervals

Step 2: Define the fuzzy sets for each interval

Assume that there are n intervals $u_1, u_1, u_1, ..., u_n$ for data set obtained in Step 1. For n intervals, there are n linguistic values which are $A_1, A_2, A_3, ..., A_{n-1}$ and A_n to represent different regions in the universe of discourse, respectively. Each linguistic variable represents a fuzzy set A_i $(1 \le i \le n)$ and its definition is described in (4).

$$A_i = \sum_{j=1}^{7} \frac{a_{ij}}{u_j};$$
 (1)

where $a_{ij} \in [0,1]$, $1 \le i \le n$, $1 \le j \le n$ and u_j is the j-th interval. The value of a_{ij} indicates the grade of membership of u_j in the fuzzy set A_i and it is shown as following:

$$\begin{array}{ccc}
1 & \text{if } j == i \\
a_{ij} = 0.5 & \text{if } j == i - 1 \text{ or } j == i + 1 \\
0 & \text{otherwise}
\end{array}$$
(2)

Step 3: Fuzzify variations of the historical enrolment data

In order to fuzzify all historical data, it's necessary to assign a corresponding linguistic value to each interval first. The simplest way is to assign the linguistic value with respect to the corresponding fuzzy set that each interval belongs to with the highest membership degree.

Step 4: Identify all fuzzy relationships

Relationships are identified from the fuzzified historical data obtained in Step 3. If the fuzzified enrollments of years t and t - 1 are A_i and A_j, respectively, then construct the first – order fuzzy logical relationship "A_i \rightarrow A_j", where A_i and A_j are called the fuzzy set on the left-hand side and fuzzy set on the right-hand side of fuzzy logical relationships, respectively.

Step 5: Construct the fuzzy logical relationship groups

By Chen [3], all the fuzzy relationship having the same fuzzy set on the left-hand side or the same current state can be put together into one fuzzy relationship group.

Suppose there are relationships such that

 $A_i \rightarrow A_j ; A_i \rightarrow A_k ; \dots$

We can be grouped into a relationship group as follows: $A_i \rightarrow A_j A_k \dots$

Step 6: Calculate the forecasted outputs.

Calculate the forecasted output at time t by using the following principles:

<u>*Rule 1*</u>: If the fuzzified enrolment of year t-1 is A_j and there is only one fuzzy logical relationship in the fuzzy logical relationship group whose current state is A_j , shown as follows: $A_j \rightarrow A_k$; then the forecasted enrolment of year t forecasted = m_k

where m_k is the midpoint of the interval u_k and the maximum membership value of the fuzzy set A_k occurs at the interval u_k

<u>*Rule 2*</u>: If the fuzzified enrolment of year t -1 is A_j and there are the following fuzzy logical relationship group whose current state is A_j , shown as follows:

$$A_j \rightarrow A_{i1}, A_{i2}, A_{ip}$$

then the forecasted enrolment of year t is calculated as

follows: forecasted $= \frac{m_{1+m_2+\dots+m_p}}{p}$; $p \le n$

where $m_1, m_2, ... and m_p$ are the middle values of the intervals u_1 , u_2 and u_p respectively, and the maximum membership values of $A_1, A_2, ..., A_p$ occur at intervals $u_1, u_2, ..., up$, respectively.

<u>*Rule 3*</u>: If the fuzzified enrolment of year t is A_j and there is a fuzzy logical relationship in the fuzzy logical relationship group whose current state is A_j , shown as follows: $A_j \rightarrow \#$

where the symbol "#" denotes an unknown value, then the forecasted enrollment of year t + 1 is m_j , where m_j is the midpoint of the interval u_j and the maximum membership value of the fuzzy set A_j , occurs at u_j .

IV. FORECAST ENROLMENTS BASED ON THE PROPOSED METHOD USING THE FIRST-ORDER FUZZY TIME SERIES

To verify the effectiveness of the proposed model, all historical enrolments in <u>Table 1</u> (*the enrolment data at the University of Alabama from 1971s to 1992s*) are used to illustrate for forecasting process. The stepwise procedure of the proposed model is presented as following:

Table 1: Historical	enrolments of the University of Alabama

Year	Actual data	Year	Actual data
1971	13055	1982	15433
1972	13563	1983	15497
1973	13867	1984	15145
1974	14696	1985	15163
1975	15460	1986	15984
1976	15311	1987	16859
1977	15603	1988	18150
1978	15861	1989	18970
1979	16807	1990	19328
1980	16919	1991	19337
1981	16388	1992	18876

<u>Step 1</u>: After applying the automatic clustering algorithm for clustering the historical numerical data, we can get 21 intervals which are shown in <u>Table 2</u>:

TABLE II. INTERVALS OBTAINED FROM AUTOMATIC CLUSTERING	
--	--

No	Intervals	No	Intervals
1	u ₁ = [13055, 13354.1]	12	u ₁₂ =[15984, 16088.9]
2	u ₂ = [13354.1, 13862.1]	13	u ₁₃ = [16088.9, 16687.1]
3	u ₃ = [13862.1, 14166.1]	14	u ₁₄ = [16687.1, 16807]
4	u ₄ = [14166.1, 14396.9]	15	u ₁₅ = [16807, 16919]
5	u ₅ = [14396.9, 14995.1]	16	u ₁₆ = [16919, 17850.9]
6	u ₆ = [14995.1, 15145]	17	u ₁₇ = [17850.9, 18449.1]
7	u ₇ = [15145, 15163]	18	u ₁₈ = [18449.1, 18876]
8	u ₈ = [15163, 15311]	19	u ₁₉ = [18876, 18970]
9	u ₉ = [15311, 15603]	20	u ₂₀ = [18970, 19328]
10	u ₁₀ = [15603, 15861]	21	u ₂₁ = [19328, 19337]
11	$u_{11} = [15861, 15984]$		

<u>Step 2</u>: Define fuzzy sets for each interval

For 21 intervals, there are 21 linguistic values which are A_1 , A_2, A_3, \dots, A_{n-1} and A_n , shown as follows:

$A_{1} = \frac{1}{u_{1}} + \frac{0.5}{u_{2}} + \frac{0}{u_{3}} + \dots + \frac{0}{u_{21}}$ $A_{2} = \frac{0.5}{u_{1}} + \frac{1}{u_{2}} + \frac{0.5}{u_{3}} + \dots + \frac{0}{u_{21}}$	(3)
$A_{21} = \frac{0}{u_1} + \frac{0}{u_2} + \dots + \frac{0.5}{u_{20}} + \frac{1}{u_{21}}$	

If the historical data belongs to ui, where $(1 \le i \le 21)$, then the datum is fuzzified into A_i . For example, from Table 1, we can see that the historical data of year 1971 is 13055, where 13055 falls in the interval u = [13055, 13354.1). Therefore, the enrolment of year 1971 (i.e., 13055) is fuzzified into A_1 . The results of fuzzification are listed in Table 3, where all historical data are fuzzified to be fuzzy sets.

	Actual	Fuzzy		Actual	Fuzzy
Year	data	set	Year	data	set
1971	13055	A1	1982	15433	A9
1972	13563	A2	1983	15497	A9
1973	13867	A3	1984	15145	A7
1974	14696	A5	1985	15163	A8
1975	15460	A9	1986	15984	A12
1976	15311	A9	1987	16859	A15
1977	15603	A10	1988	18150	A17
1978	15861	A11	1989	18970	A20
1979	16807	A15	1990	19328	A21
1980	16919	A16	1991	19337	A21
1981	16388	A13	1992	18876	A19

TABLE III: FUZZIFIED ENROLMENTS OF THE UNIVERSITY OF ALABAMA

Step 3: Identify all fuzzy relationships

From <u>Table 3</u> and base on Definition 3, we get first – order fuzzy logical relationships are shown in <u>Table 4</u>

TABLE IV: THE FIRST-ORDER FUZZY LOGICAL RELATIONSHIP
--

No	Fuzzy relations	No	Fuzzy relations
1	A1 -> A2	11	A13 -> A9
2	A2 -> A3	12	A9 -> A7
3	A3 -> A5	13	A7 -> A8
4	A5 -> A9	14	A8 -> A12
5	A9 -> A9	15	A12 -> A15
6	A9 -> A10	16	A15 -> A17
7	A10 -> A11	17	A17 -> A20
8	A11 -> A15	18	A20 -> A21
9	A15 -> A16	19	A21 -> A21
10	A16 -> A13	20	A21 -> A19

Step 4: Establish all fuzzy logical relationship groups

From <u>Table 4</u> and based on Definition 5, we can obtain 14 fuzzy relationship groups, as shown in <u>Table 5</u>

17.01					
No	Relationships	No	Relationships		
1	A1 -> A2	9	A16 -> A13		
2	A2 -> A3	10	A13 -> A9		
3	A3 -> A5	11	A7 -> A8		
4	A5 -> A9	12	A8 -> A12		
5	A9 -> A9, A10, A7	13	A12 -> A15		
6	A10 -> A11	14	A17 -> A20		
7	A11 -> A15	15	A20 -> A21		
8	A15 -> A16, A17	16	A21 -> A21, A19		

<u>Step 5</u>: Calculate the forecasting value by using the three rules following as.

For example, the forecasted enrollments of the years 1972 and 1980 are calculated as follows

[1972] From <u>Table 3</u>, we can see that the fuzzified enrollment of year 1972 is A₂. From <u>Table 4</u>, we can see that there is a fuzzy logical relationship "A₁ -> A₂" in Group 1. Therefore, the forecasted enrollment of year 1972 is equal to the middle value of the interval u₂. Because the middle value of the interval u₂ is 13608, the forecasted enrollment of 1972 is 13608.

[1980] From <u>Table 3</u>, we can see that the fuzzified enrollment of year 1980 is A₁₆. From <u>Table 4</u>, we can see that there is a fuzzy logical relationship "A₁₅ -> A₁₆, A₁₇" in Group 8. Therefore, the forecasted enrollment of year 1980 is calculated as follows: Forecasted = $\frac{m_{16}+m_{17}}{2} = \frac{17384.95+18150}{2} = 17767.48$

where 17384.95 and 18150 are the middle values of the intervals u_{16} and u_{17} , respectively.

In the same way, the other forecasted enrollments of the University of Alabama based on the first-order fuzzy time series are listed in <u>Table 6</u>.

TABLE VI: FORECASTED ENROLMENTS OF UNIVERSITY OF ALABAMA

 BASED ON THE FIRST – ORDER FTS MODEL.

Year	Actual	Fuzzified	Results
1971	13055	A1	Not forecasted
1972	13563	A2	13608.1
1973	13867	A3	14014.1
1974	14696	A5	14696
1975	15460	A9	15457
1976	15311	A9	15447.7
1977	15603	A10	15447.7
1978	15861	A11	15922.5
1979	16807	A15	16863
1980	16919	A16	17767.5
1981	16388	A13	16388
1982	15433	A9	15457
1983	15497	A9	15447.7
1984	15145	A7	15447.7
1985	15163	A8	15237
1986	15984	A12	16036.4
1987	16859	A15	16863
1988	18150	A17	17767.5
1989	18970	A20	19149
1990	19328	A21	19332.5
1991	19337	A21	19127.8
1992	18876	A19	19127.8

To evaluate the forecasted performance of proposed method in the FTS, the mean square error (MSE) and the mean absolute percentage error (MAPE) are used as a comparison criterion to represent the forecasted accuracy. The MSE value and MAPE value are computed according to $(\underline{11})$ and $(\underline{12})$ as follows:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (F_i - R_i)^2$$
$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{F_i - R_i}{R_i} \right| * 100\%$$

Where, R_i notes actual data on year i, F_i forecasted value on year i, n is number of the forecasted data

V. EXPERIMENTAL RESULTS

A. Experimental results for forecasting enrollments

In this subsection, we apply the proposed method for forecasting the enrolment of Alabama University from 1971s to 1992s are shown in <u>Table 1</u>.

Experimental results for our model will be compared with the existing methods, such as the **SCI**

model [2] the **C96** model [3] and the **H01** model [5] based on the first – order FTS are listed in <u>Table 7</u>.

<u>Table 7</u> shows a comparison of (\underline{M}) SE and MAPE of our method using the first-order fuzzy relation groups under different number of interva(\underline{S}) where MSE and MAPE are calculated according to ($\underline{4}$) and ($\underline{5}$) as follows:

$$\begin{split} MSE &= \frac{\sum_{i=1}^{21} (F_i - R_i)^2}{N} = \\ \frac{(13608 - 13563)^2 + (14014.1 - 13867)^2 \dots + (19127 - 18876)^2}{MAPE} = 56297 \\ MAPE &= \frac{1}{21} \sum_{i=1}^{21} \left| \frac{F_i - R_i}{R_i} \right| * 100\% = \frac{1}{21} \left(\frac{abs(13608 - 13563)}{13563} + \right. \\ \dots + \frac{abs(19127 - 18876)}{18876} \right) = 0.849\% \end{split}$$

where N denotes the number of forecasted data, F_i denotes the forecasted value at time i and R_i denotes the actual value at time i.

TABLE VII: A COMPARISON OF THE FORECASTED RESULTS OF PROPOSED MODEL WITH THE EXISTING MODELS BASED ON THE FIRST-ORDER FUZZY TIME SERIES UNDER DIFFERENT NUMBER OF INTERVALS.

Year	Actual data	SCI	C96	H01	Our mode
1971	13055	-	-	-	-
1972	13563	14000	14000	14000	13608.1
1973	13867	14000	14000	14000	14014.1
1974	14696	14000	14000	14000	14696
1975	15460	15500	15500	15500	15457
1976	15311	16000	16000	15500	15447.7
1977	15603	16000	16000	16000	15447.7
1978	15861	16000	16000	16000	15922.5
1979	16807	16000	16000	16000	16863
1980	16919	16813	16833	17500	17767.5
1981	16388	16813	16833	16000	16388
1982	15433	16789	16833	16000	15457
1983	15497	16000	16000	16000	15447.7
1984	15145	16000	16000	15500	15447.7
1985	15163	16000	16000	16000	15237
1986	15984	16000	16000	16000	16036.4
1987	16859	16000	16000	16000	16863
1988	18150	16813	16833	17500	17767.5
1989	18970	19000	19000	19000	19149
1990	19328	19000	19000	19000	19332.5
1991	19337	19000	19000	19500	19127.8
1992	18876	19000	19000	19149	19127.8
MSE		423027	407507	226611	56297
MAPE		3.22%	3.11%	2.66%	0.85%

From <u>Table 7</u>, we can see that the proposed method has a smaller MSE value of 56297 and MAPE value of 0.85% than SCI model the C96 model [3] and the H01 model [5]. To verify the forecasting effectiveness for high-order FLRs with different number of intervals, two forecasting methods in the C02 model [8], CC06b model [11] shown in <u>Table 8</u>, are selected to compare with our model. From <u>Table 8</u>, The proposed model also gets the lowest MSE value of 16143 for the 3rdorder FLRGs among all the compared models and The average MSE value is 18419.5 smaller than the C02 model and CC06b model.

TABLE VIII: A COMPARISON OF THE FORECASTED ACCURACY BETWEEN OUR MODEL AND C02 MODEL, THE CC06B MODEL FOR DIFFERENT INTERVALS WITH DIFFERENT NUMBER OF ODERS BY THE MSE VALUE.

Methods	Numbe	r of oders							
	2	3	4	5	6	7	8	9	Average(MSE)
C02 model	89093	86694	89376	94539	98215	104056	102179	102789	95868
CC06b model	67834	31123	32009	24948	26980	26969	22387	18734	31373
Our model	21300	16143	17040	18042	17837	17917	18931	20146	18419.5

To be clearly visualized, <u>Fig. 1</u> depicts the trends for actual data and forecasted results of the H01 model with forecasted results of proposed method. From Fig. 1, It is obvious that the forecasting accuracy of the proposed model is more close than any existing models for the first-order fuzzy logical relationships with different number of intervals. In addition, Displays the forecasting results of C02 model, CC06b model and our model. The trend in forecasting of enrolment by high-order of the fuzzy time series in comparison to the actual enrolment can be visualized in Fig.2.

Fig. 1: The curves of the H01 models and our model for forecasting enrolments of University of Alabama

Fig. 2: A comparison of the MSE values for different intervals with the high-order FTS model.

From <u>Fig.2</u>, it can see that the predicted values and the actual values are very close and the forecasting accuracy by the MSE value of the proposed model is more precise than among two compared models with different order fuzzy logical relationship.

B. Experimental results for forecasting the TAIFEX

In this subsection, we present the forecasting results of the proposed model. Our model is validated

using the stock index data set of TAIFEX (Historical data of the TAIFEX in [11]). In order to verify the forecasting effectiveness of the proposed model with the high-order FLRGs and different numbers of intervals, six FTS models in C96 [3] model, H01b [5] model, L06[11] model, L07[13] model, are examined and compared. The forecasted accuracy of the proposed method is estimated using the MSE technique in equal (4).

	TABLE IX: A COMPARISON OF THE FORECASTING VALUES OF THE PROPOSED MODEL BY MSE VALUE WITH EXISTING MODEL							
BASED ON Z^{TH} –ORDER ETS								

Date	Actual data	C96[3]	H01b[5]	L06[11]	L07[13]	Proposed method	
08/03/1998	7552						
08/04/1998	7560	7450	7450			7535.9	
08/05/1998	7487	7450	7450			7535.9	
08/06/1998	7462	7500	7500	7450		7444	
08/07/1998	7515	7500	7500	7550		7515.8	
08/10/1998	7365	7450	7450	7350		7444	
08/11/1998	7360	7300	7300	7350		7362.5	
08/12/1998	7330	7300	7300	7350	7348	7345	7345
08/13/1998	7291	7300	7300	7250	7301.5	7287	7287
08/14/1998	7320	7183.33	7188.33	7350	7311.5	7287.2	7325
08/15/1998	7300	7300	7300	7350	7301.5	7310	7310
08/17/1998	7219	7300	7300	7250	7226.5	7222	7222
08/18/1998	7220	7183.33	7100	7250	7226.5	7254.5	7222
08/19/1998	7285	7183.33	7300	7250	7301.5	7254.5	7287
08/20/1998	7274	7183.33	7188.33	7250	7256.5	7287.2	7287
08/21/1998	7225	7183.33	7100	7250	7226.5	7287.2	7249.5
08/24/1998	6955	7183.33	7100	6950	6952	6987.2	6987.2
08/25/1998	6949	6850	6850	6950	6952	6930.8	6930.8
08/26/1998	6790	6850	6850	6750	6783.5	6859	6796.5
08/27/1998	6835	6775	6775	6850	6852	6838.5	6838.5
08/28/1998	6695	6850	6750	6650	6713	6761.4	6702.4
08/29/1998	6728	6750	6750	6750	6713	6735.1	6745
08/31/1998	6566	6775	6650	6550	6561	6566	6566
09/01/1998	6409	6450	6450	6450	6406	6416.6	6416.6
09/02/1998	6430	6450	6550	6450	6406	6592.8	6483.2
09/03/1998	6200	6450	6350	6250	6198.5	6214.8	6214.8

MSE		9668.94	5437.58	1364.56	249.61	2538.43	187.18
09/30/1998	6787	6850	6750	6750	6783.5	6796.5	6796.5
09/29/1998	6806	6850	6850	6850	6792.5	6761.4	6820.5
09/28/1998	6840	6850	6750	6850	6852	6838.5	6838.5
09/25/1998	6871	6850	6850	6850	6852	6880.5	6880.5
09/24/1998	6890	6850	6850	6850	6893	6865.7	6898
09/23/1998	6852	6850	6850	6850	6852	6859	6861.5
09/22/1998	6926	6850	6850	6950	6952	6865.7	6930.8
09/21/1998	6861	6850	6850	6850	6852	6861.5	6861.5
09/19/1998	7039	6850	6850	7050	7089	7039	7039
09/18/1998	6842	6850	6850	6850	6852	6859	6847
09/17/1998	6906	6850	6850	6950	6952	6859	6930.8
09/16/1998	6952.75	6775	6850	6817	6953	6823.4	6930.8
09/15/1998	6762	6775	6775	6817	6783.5	6768.3	6768.3
09/14/1998	6774.55	6775	6775	6817	6783.5	6821.1	6780.8
09/11/1998	6726.5	6775	6775	6750	6713	6725.2	6725.2
09/10/1998	6709.75	6775	6650	6750	6713	6823.4	6716
09/09/1998	6769.6	6850	6750	6750	6783.5	6865.7	6768.3
09/08/1998	6859.4	6775	6850	6850	6852	6821.1	6861.5
09/07/1998	6722.3	6750	6750	6750	6713	6735.1	6725.2
09/05/1998	6697.5	6450	6550	6650	6703	6592.8	6702.4
09/04/1998	6403.2	6450	6450	6450	6406	6416.6	6416.6

From <u>Table 9</u>, we can see that the proposed method has the MSE value of 2538.43 smaller than the methods presented in C96 [3] and H01b [5] for the first-order fuzzy relationship groups with different number of intervals. Therefore, the proposed method obtains a lowest average MSE value of 187.18 among two forecasting models presented in L06 [11] and L07 [13] for the high-order fuzzy relationship groups with different number of intervals.

VI. CONCLUSIONS

In this paper, we have presented a hybrid forecasted method to handle forecasting enrolments of the University of Alabama and the TAIFEX based on the fuzzy logical relationship groups and automatic clustering algorithm. Firstly, the proposed method applies the automatic clustering algorithm to divide the historical data into clusters and adjust them into intervals with different lengths. Secondly, we fuzzify all the historical data of the enrolments and establish the fuzzy relation groups. Thirdly, we calculate forecasting output and compare forecasting accuracy with other existing models. Lastly, based on the performance comparison in Tables 7, 8 9 and Fig. 1, 2, it can show that our model outperforms previous forecasting models for the training phases with various orders and different interval lengths.

The proposed model was only tested by the forecasting enrollment problem and TAIFEX data, it can actually be applied to other practical problems such as earthquake forecast, and weather prediction in the further research.

ACKNOWLEDGMENT

The work reported in this paper has been supported by the Science Council of Thai Nguyen University of Technology - Thai Nguyen University, under contract number 110xHĐNCKH-ĐHKTCN

REFERENCES

 Q. Song, B.S. Chissom, "Forecasting Enrollments with Fuzzy Time Series – Part I," Fuzzy set and system, vol. 54, pp. 1-9, 1993b.

- [2] Q. Song, B.S. Chissom, "Forecasting Enrollments with Fuzzy Time Series – Part II," Fuzzy set and system, vol. 62, pp. 1-8, 1994.
- [3] S.M. Chen, "Forecasting Enrollments based on Fuzzy Time Series," Fuzzy set and system, vol. 81, pp. 311-319. 1996.
- [4] Hwang, J. R., Chen, S. M., & Lee, C. H. Handling forecasting problems using fuzzy time series. Fuzzy Sets and Systems, 100(1– 3), 217–228, 1998.
- [5] Huarng, K. Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems, 123, 369–386, 2001b.
- [6] Singh, S. R. A simple method of forecasting based on fuzzytime series. Applied Mathematics and Computation, 186, 330–339, 2007a.
- [7] Singh, S. R. A robust method of forecasting based on fuzzy time series. Applied Mathematics and Computation, 188, 472–484, 2007b.
- [8] S. M. Chen, "Forecasting enrollments based on high-order fuzzy time series", Cybernetics and Systems: An International Journal, vol. 33, pp. 1-16, 2002.
- [9] H.K.. Yu "Weighted fuzzy time series models for TAIEX forecasting ", Physica A, 349, pp. 609–624, 2005.
- [10] Chen, S.-M., Chung, N.-Y. Forecasting enrollments of students by using fuzzy time series and genetic algorithms. International Journal of Information and Management Sciences 17, 1–17, 2006a.
- [11] Chen, S.M., Chung, N.Y. Forecasting enrollments using high-order fuzzy time series and genetic algorithms. International of Intelligent Systems 21, 485–501, 2006b.
- [12] Huarng, K. theH. Effective lengths of intervals to improve forecasting fuzzy time series. Fuzzy Sets and Systems, 123(3), 387–394, 2001a.
- [13] Lee, L.-W., Wang, L.-H., & Chen, S.-M. Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithms. Expert Systems with Applications, 33, 539–550, 2007.
- [14] Jilani, T.A., Burney, S.M.A. A refined fuzzy time series model for stock market forecasting. Physica A 387, 2857–2862. 2008.
- [15] Wang, N.-Y, & Chen, S.-M. Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and twofactors high-order fuzzy time series. Expert Systems with Applications, 36, 2143–2154, 2009
- [16] Kuo, I. H., Horng, S.-J., Kao, T.-W., Lin, T.-L., Lee, C.-L., & Pan. An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Systems with applications, 36, 6108–6117, 2009a.
- [17] S.-M. Chen, K. Tanuwijaya, "Fuzzy forecasting based on highorder fuzzy logical relationships and automatic clustering techniques", Expert Systems with Applications 38, 15425–15437, 2011.
- [18] Shyi-Ming Chen, Nai-Yi Wang Jeng-Shyang Pan. Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships, Expert Systems with Applications 36, 11070–11076, 2009.