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Abstract— The purpose of this research is the 
analysis of intensity distribution in the laser beam, 
both from experimental and theoretical point of 
view. I performed the measurement of intensity 
distribution across the beam of the He-Ne laser, 
and made an attempt to compare it with Gaussian 
distribution function. The analysis of the image 
profile can be used in determination the distance 
of the objects depending on the distribution of the 
spot contours of the laser beam with its width. As 
well as it can be used to capturing images to the 
objects and determining their distance and the 
shape of the objects. As we can see, the fit is very 
good. From the analysis of the fit it was found that 
(program which made the fit GNUPLOT-mention). 
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Introduction 
Lasers are devices that amplify or increase 

the intensity of light to produce a highly directional, 
high-intensity beam that typically has a very pure 
frequency or wavelength. The beams come in sizes 
ranging from approximately one-tenth the diameter of 
a human hair to that of a very large building.[1] Since 
the generation of the first laser beam in 1960, the 
detection techniques have been developed in order to 
recognize and analyze properties of the beam. In 
general, the analysis of laser beam is based on 
energy measurement, the intensity distribution of the 
laser beam, beam divergence, waist parameter, 
number of modes and others [2]. In optics, a Gaussian 
beam is an example of electromagnetic wave whose 
transverse electric field and intensity distributions are 
well approximated by Gaussian functions. Many 
lasers emit beams that approximate a Gaussian 
profile, in which case the laser is said to be operating 
in the fundamental transverse mode. The Gaussian 
wave is commonly used in theoretical and 
experimental optics and its mathematical 
representation has successfully been applied by many 
workers, and the mathematical function that describes 
shape of the laser beam is approximate solution of 
Helmholtz equation. We get this approximation by 
solution of homogeneous wave equation, and wave 
equation can be derived from Maxwell's equations in 
empty space. Thus any solution of Maxwell's 
equations in empty space satisfies the wave equa-
tion.[3] 
 

Solution of wave equation oscillating in time 
and Helmholtz equation 

The wave nature of light can be seen in 
experiments on interference and diffraction. The 
light is theoretically depicted as electromagnetic 
wave fulfilling Maxwell equations. In contrast, the 
particle nature of light is expressed through the 
idea of a light quantum or photon resulting in the 
theoretical description from quantization of the 
electromagnetic field. However, the degree of 
coherence of laser light is much better than that of 
other forms of light, and it is only in exceptional 
cases that the quantization of the electromagnetic 
field of laser light manifests itself in any substantial 
effect. Therefore, we shall discuss the nature of 
light as expressed in terms of classical 
electromagnetic waves, and we will describe in 
detail the propagation of light, and in particular the 
highly directional (and mostly paraxial) light from a 
laser, starting from Maxwell's equations.[4] 
As is known from electromagnetic theory, the 
electric field E⃗, magnetic field H⃗, magnetic flux 

density B⃗, electric flux density D⃗, electric current 
density 𝑗, and charge density 𝜌, all of which may 
change as functions of coordinates (x, y, z) and 
time t, are related by Maxwell's equations: 

∇×�⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡
, ……………(1) 

∇ × �⃗⃗⃗� = 𝐽 +
𝜕�⃗⃗⃗�

𝜕𝑡
, ………..(2) 

∇.�⃗⃗⃗� = 𝜌, ………………(3) 

∇.�⃗⃗� = 0. ………………(4) 

Here ∇  is the vector operator with𝜕 𝜕𝑥⁄ ,∂/∂y and 

𝜕 𝜕𝑍⁄ as its 𝑥, y, and Z components, respectively. 
Let 𝜀  denote the electric permittivity, 𝜇  the 

magnetic permeability and 𝜎  the electric 
conductivity of medium. We have then 

�⃗⃗⃗� =𝜀 E,  �⃗⃗� =𝜇�⃗⃗⃗� ,  𝐽 =𝜎�⃗⃗�. ….(5) 

By using the polarization �⃗⃗�and the permittivity in 
vacuoε0 , we have    

  �⃗⃗⃗� =ε0 �⃗⃗� + �⃗⃗�………………   (6) 
The electric susceptibility is given by: 

�⃗⃗� = 𝜀o𝑥�⃗⃗�……………………. (7)                                                           
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In general,�⃗⃗� is proportional to �⃗⃗� when the electric 
field is weak, but it is no longer proportional when 

�⃗⃗� is strong. In addition, it does not always follow 

that �⃗⃗�  varies in time in accordance with the time 

variation of�⃗⃗�.  The�⃗⃗�-field follows the�⃗⃗� -field only if x  
is constant, i.e. independent on the frequency of 
external field. We shall assume later that the 
medium is dielectric so that 𝜎 =  0, and the 

permeability is                                            𝜇 = 𝜇0 = 
4𝜋 x 10-7H/m. 
Applying the curl operation to both sides of (1) and 

using (2) and�⃗⃗� =𝜇�⃗⃗⃗�,  we obtain 

∇x (∇×�⃗⃗�) = -∇×
∂B⃗⃗⃗

∂t
 = -𝜇

𝜕

𝜕𝑡
∇ × �⃗⃗⃗�= −𝜇

𝜕2�⃗⃗⃗�

𝜕2𝑡
.  ……….(8) 

 According to vector calculus we have 

𝛻 ( 𝛻 x �⃗⃗� )  = 𝛻  ( 𝛻 . �⃗⃗� ) −𝛻 

2�⃗⃗�,………………………….…(9)                                                           
so that (8) can be written as 

𝛻  ( 𝛻 ∙ �⃗⃗� ) −𝛻 2 �⃗⃗�  =  −𝜇
𝜕2�⃗⃗⃗�

𝜕2𝑡
  

………………………….(10) 

Using (3.4) and�⃗⃗⃗� =  ε �⃗⃗� we have 

𝛻. �⃗⃗� =
1

𝜀
𝛻 ∙ �⃗⃗⃗�=

𝜌

𝜀
 …………….(11) 

But, since an electric charge produces only an 
electrostatic field and is irrelevant to 
electromagnetic waves in an optical medium, we 
can neglect it and put𝜌 = 0. Therefore, we have 𝛻 ∙

�⃗⃗� = 0 and equation (10) becomes: 

𝛻2�⃗⃗� − 𝜀𝜇
𝜕�⃗⃗�

𝜕𝑡
= 0  …………………..(12) 

This is the equation of waves propagating with the 

velocity v such that v2=
1

𝜀𝜇
, and the velocity of light 

in vacuo is c = 
1

√𝜀0𝜇0
. 

Using Fourier expansion one can express any 
waveform as superposition of harmonic waves . On 
the other hand . laser light is almost perfectly 
monochromatic. Therefore, we can express the 
time factor of monochromatic electromagnetic 

wave of frequency 𝜔by �⃗⃗�=𝜀exp(iwt), and the wave 
equation (12) becomes: 

𝛻2ε⃗ + k 2 𝜀 = 0,  ……………….(13) 

where k 2  = 𝜔 2 ε µ ,  and k  = 
𝜔

𝜈
 is the wave 

number. 
In the ordinary treatment of wave optics it is 
sufficient to use the wave equation for a scalar 
variable u, 

𝛻2u  +  k 2 u  =0.  ……………...(14) 
This equation is known as Helmholtz equation. For 
the explanation of diffraction, interference, 
birefringence, etc. This is equivalent to talking only 
of one of the components of the vector. In general, 
when dimensions of the medium are large 
compared to the wavelength, the light wave is 
almost purely transverse so that a scalar treatment 
is quietest is factory. We shall use Helmholtz 
equation t o  analyze the characteristics of 
monochromatic beam of light, It is well  known that 
any arbitrary electromagnetic field can be 

expanded into plane or spherical waves, but a light 
beam propagating along an arbitrary axis can be 
approximately expanded into modes of Hermit-
Gaussian functions along that axis [5]. 
Taking the z axis along the light beam and the 
wave number of the medium for transverse waves 
as k, we put 

 u  =  A ( x ,  y ,  z ) e x p ( −i k z )  … … … … … …   
( 1 5 )   
The function A  representing the light beam must 
become practically zero for large values of x  or y  
and changes slowly with z. Substituting equation 
(3.15) in (3.14) we get: 

(
𝜕2𝐴

𝜕𝑋2 ) e x p ( − i k z )  +  (
𝜕2𝐴

𝜕𝑦2 ) e x p ( − i k z )  

+ (
𝜕2𝐴

𝜕𝑧2)e x p ( −i k z )  

−2𝑖𝑘(
𝜕𝐴

𝜕𝑧
)𝑒𝑥𝑝(−𝑖𝑘𝑧) – k2Aerp( −i k z ) +k2Aerp(−𝑖𝑘𝑧)=

0, ……..(16) 
which reduces to 

(
𝜕2𝐴

𝜕𝑥2 )+(
𝜕2𝐴

𝜕𝑦2 ) −2𝑖𝑘(
𝜕𝐴

𝜕𝑧
) +(

𝜕2𝐴

𝜕𝑧2 )=0 

………………………………… (17) 

The term exp− ( i k z )  of Equation 15 accounts for 
the wave oscillation along the propagation direction. 
The dependence of A  on 2 is of a different nature. 
It likely accounts for the slow decrease in the 
amplitude of the wave as the wave propagates. 
Thus we can say that A  varies slowly with z, and 

thus we can neglect the term (
𝜕2𝐴

𝜕𝑍2) in front of the 

other ones and drop it from Equation (17) . The 
resulting equation is 

(
𝜕2𝐴

𝜕𝑥2)+(
𝜕2𝐴

𝜕𝑦2)−2𝑖𝑘 (
𝜕𝐴

𝜕𝑧
) = 0 …………(18) 

Equation (18) is called the paraxial wave equation. 

Approximate solution of the Helmholtz equa-

tion 

A simple solution to the wave equation is one 
where we insert the simplest possible form of the 
solution and find the exact form that obeys the 
wave equation. The more formal solution is one 
where we just solve the wave equation in its full 
generality. We guess the simple trial solution to 
(18) to be of the form 

A ( 𝑟)⃗⃗⃗⃗ =  F 1 ( z ) e x p [ −
𝜌2

𝐹2(𝑍)
].  

…………………………… (19) 

Here F 1 ( z )  and F 2 ( z )  are slowly varying 
functions of z  only, and 𝜌2  =  x 2 +y 2 .  To find 
the equations which describeF 1 ( z )  and 
F 2 ( z )  we will substitute the equation (3.19) into 
the equation (3.18). The first derivative of function 
A  with respect to x  is given by 
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𝜕𝐴

𝜕𝑥
=  F 1 ( z ) [−

2𝑥

𝐹2(𝑍)
] exp [−

𝜌2

𝐹2(𝑍)
]  ……(20)                                                      

and the second derivative  

𝜕2𝐴

𝜕𝑥2 = 𝐹1(𝑍) [−
2

𝐹2(𝑧)
] 𝑒𝑥𝑝 [−

𝜌2

𝐹2(𝑧)
] +

𝐹1 (𝑧)(−
2𝑥

𝐹2(𝑧)
)2 exp [−

𝜌2

𝐹2(𝑧)
]    ,….(21) 

     and similarly for the derivative with respect to y 

𝜕2𝐴

𝜕𝑦2 = 𝐹1(𝑍) [−
2

𝐹2(𝑧)
] 𝑒𝑥𝑝 [−

𝜌2

𝐹2(𝑧)
] +

𝐹1 (𝑧)(−
2𝑦

𝐹2(𝑧)
)2 exp [−

𝜌2

𝐹2(𝑧)
]  ,  ….(22) 

According to equation (18) we will also find the first 

derivative of with respect to z 
∂A

∂z
= 𝐹’1(𝑧)𝑒𝑥𝑝 [−

𝜌2

𝐹2(𝑧)
] +

𝐹1(𝑧)
𝜌2

𝐹2(𝑧)2 𝐹2
′(𝑧)exp[−

𝜌2

F2(z)
….………..………... (23) 

Substituting equations (21), (22), (23) into equation 

3.18) we get 

−
4𝐹1(𝑧)

𝐹2(𝑧)
+ 𝐹1(𝑧)

4

𝐹2
2(𝑧)

(𝑥2 + 𝑦2) − 2𝑖𝑘𝐹1
′(𝑧) −

2𝑖𝑘
𝐹1(𝑧)

𝐹2
2(𝑧)

𝐹2
′(𝑥2 + 𝑦2) = 0,..(24) 

or 

[−
4𝐹1(𝑧)

𝐹2(𝑧)
− 2𝑖𝑘𝐹1

′(𝑧) + (𝑥2 + 𝑦2)[−
4𝐹1(𝑧)

𝐹2
2(𝑧)

−

2𝑖𝑘
𝐹1(𝑧)

𝐹2
2(𝑧)

𝐹2
′(𝑧)] = 0   ………..(25) 

Equation (25) will be fulfilled if 
2𝐹1(𝑧)

𝐹2(𝑧)
+ 𝑖𝑘𝐹1

′(𝑧) = 0 …………(26) 

and 
2𝐹1(𝑧)

𝐹2
2(𝑧)

− 𝑖𝑘
𝐹1(𝑧)

𝐹2
2(𝑧)

𝐹2
′(𝑧)] = 0 … (27) 

 

separately. It follows from (27) that 

𝐹2
′(𝑧) =

2

𝑖𝑘
 …………..…   (28) 

By integration of the equation (28) we get: 

𝐹2(𝑧) =
2𝑧

𝑖𝑘
+ 𝑐 …………….………(29) 

where c is constant of integration. 

We can rewrite the equation (26) as: 

 

𝑖𝑘𝐹1
′(𝑧) = −

2𝐹1(𝑧)

𝐹2(𝑧)
  ……….(30) 

or 
𝐹1

′ (𝑧)

𝐹1(𝑧)
=−

2

𝑖𝑘

1

𝐹2(𝑧)
.         .…(31) 

By using the equation (29) in t h e   
equation (31) we obtain 
𝐹1

′(𝑧)

𝐹1(𝑧)
=−

2

𝑖𝑘
2𝑘

𝑖𝑘
+𝑐

∙ ……………..(32) 

The last equation can be writ ton as 
𝑑

𝑑𝑧
ln𝐹1(𝑧) = −

1

𝑍+
𝑖𝑘

2
𝐶
 , ………………..(33) 

              then 

ln 𝐹1(𝑧) = −ln (𝑧 +
𝑖𝑘

2
c)+𝑐1 , … … … …(3.34) 

where 𝑐1 can be written as 𝑐1 = ln 𝐵1. 
Then we can write equation (34) in the form 

𝐹1(𝑍) =
𝐵1

𝑧+
𝑖𝑘𝑐

2

∙………………………….(35) 

Modeling of the Gaussian laser beam by Ap-
proximate solution of Helmholtz equation 
For t h e  purpose of modeling of t h e  Gaussian laser 
beam via approximate solution of Helmholtz equation 

we substitute the forms o f  𝐹1 (z)  and 
𝐹2(𝑧) , equations (35) and (29) respectively, into equa-
tion (19) and we get 

A(𝑟)=
𝐵1

𝑍+
ikc

2

exp [−
𝜌2

𝑧2
𝑖𝑘

+𝑐
], …..(36)   

      This equation represents the propagation of 
Gaussian beam in z direction. At each value of z the 
intensity is a Gaussian function of the radial distance 

𝜌. This is why the wave is called a Gaussian beam. 
The Gaussian function has its peak at 𝜌= 0 (on axis) 

and drops monotonically with increasing 𝜌. The beam 
radius w(z) of the Gaussian distribution increases with 
the axial distance z. A large beam divergence for a 
given beam radius corresponds to poor beam quality. 
A low beam divergence can be important for 
applications such as pointing or free-space optical 
communications.[6] 
 
Measurement of the intensity distribution in He-Ne 
laser 
The theoretical (TEM00) beam has a perfect 
Gaussian profile. Lasers can produce many other 
TEM modes. In general, one can say that laser 
beams have a symmetric intensity profile. i.e. if we 
run across the beam, the intensity is minimum at 
the edge and as we move towards the center it 
increases and is maximum at the center and then it 
falls in a similar fashion as on the other side. For 
the purpose of present measurement we used the 
beam of the He-Ne laser (λ= 562.8 nm) with power 
(5 mW) and a high speed silicon detector to 
measure the intensity distribution of the laser light 
falling onto the detector when the laser beam is not 
attenuated. The detector was located 0.4m away 
from the output end of the laser and it moved on a 
translational stage in increments of mm, as show in 
Figure (1). 

 
Figure 1: Scanning detector along diameter beam 

 

 

 

 

 

The data were plotted and compared with the 
theoretically expected Gaussian form. The theoretical 
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Gaussian distribution  has three parameters: I0 
maximum intensity, x0-center of the beam (point of 
maximum intensity), and w-width or radius of the 
beam (1/2 the diameter). The fit of Gaussian curve to 
measurement data was with the use of GNUPLOT. 
For each measured point the square of the difference 

between theoretical fit and measured value was saved 
in an "error" cell, and the sum of these values was 
displayed to show the "quality of fit." I was able to 
adjust the theoretical graph constants until quality of 
the fit was nearly perfect (the lower value is the better 
fit). 

Figure 2: Results of measurement  and fit to the Gaussian curve with distance x-axes. 
 
 

 
Figure 3: Results of measurement  and fit to the Gaussian curve with distance y-axes. 

 
Final set of parameters             Asymptotic Standard 
Error 
x0 = 104:484                              +/- 0.3436 (0.3289%). 
w = 70:3211                               +/- 0.6883 (0.9788%). 
I 0 = 147:568                              +/- 1.249 (0.8463%). 
 
 

 
 
 
 

Conclusions 

 The mathematical equation which 

describes the Gaussian beam can be 
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obtained from the approximate solution of 

the Helmholtz equation which follows from 

the wave equation. 

 In this paper we have presented an exact 

solution for the Gaussian vectorial wave. 

Our solution satisfies  Maxwell’s equations. 

This exact solution has been compared to 

results obtained previously by other 

workers,  notably the paraxial scalar and 

paraxial vectorial approximations. 

 The  topic of Gaussian beams provides 

students with the fundamentals for 

understanding the physics of laser beam and 

their propagation. Given the wide-spread use of 

lasers today, this material should be an 

essential part of course on optics. The coverage 

of high-order Gaussian modes serves to 

deepen the discussion of light waves and 

underscore the key components of the wave 

function: amplitude and phase. 

 The beam quality with Gaussian shape 

(controlling the uniformity of the top hat and 

determination of the laser beam energy) is very 

important in medical applications especially in 

surgical operations. The intensity distribution of 

the laser beam is related to the source power 

and can be used in determination the distance 

of the objects. 
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