
Journal of Multidisciplinary Engineering Science Studies (JMESS) 

ISSN: 2458-925X 

Vol. 2 Issue 7, July - 2016 

www.jmess.org 
JMESSP13420154 739 

Nonpreemptive Scheduling for a Repair Shop 
with Spares 

Abderrahmane Abbou 

Dept. of Mechanical & Industrial Eng. 

University of Toronto, 5 King’s College Road, 

Toronto, Ontario, Canada, M5S 3G8 

a.abbou@mail.utoronto.ca 

Viliam Makis 

Dept. of Mechanical & Industrial Eng. 

University of Toronto, 5 King’s College Road, 

Toronto, Ontario, Canada, M5S 3G8 

makis@mie.utoronto.ca 

Abstract—We consider a repair shop serving 
multiple fleets of failing machines. In order to in-
crease the machine availability, each fleet keeps its 
own spare machine inventory, which is controlled 
according to the base-stock policy. The machines 
fail after operating for an exponentially distributed 
time with fleet-dependent rate. Upon failure, a 
machine is immediately sent to the repair shop that 
can serve one failed machine at a time. Repair 
times have general probability distributions with 
fleet-dependent characteristics. The repaired 
machines, which are as-good-as-new, either join 
their respective spare machine inventory if the 
corresponding fleet operates at full capacity, or 
immediately start operating. The repair shop faces 
the problem of scheduling the repair of failed 
machines so as to minimize the sum of inventory 
holding and machine shortage costs. The system 
just described is modeled as a single server 
multiclass finite population queueing system. The 
optimal scheduling policy, which is restricted to 
the class of non-idling and nonpreemptive policies, 
is computed using a semi-Markov decision 
process. The computational time is considerable 
for nontrivial systems. A simple heuristic 
scheduling policy is proposed, which has a near-
optimal performance and a short computational 
time. 

Keywords— Multiclass queueing system; finite 
population queues; repair shop with spares; server 
scheduling 

 

I.INTRODUCTION  

Capital intensive businesses use various kinds of 
machines in order to provide various kinds of goods or 
services. For example, airline companies use fleets of 
small aircraft for short-distance flights and fleets of 
large aircraft for long-distance flights. The occasional 
interruption of operations, due to unexpected machine 
failures or unscheduled maintenance, have direct con- 

sequences on profitability in the form of lost revenue 
or goodwill. To improve availability, companies 
maintain spare machines for each fleet, which however 
comes at the expense of increased inventory holding 

costs when such spares are ready for use but not put 
in operation. 

Maintenance departments of such companies face 
the special challenge of assigning repair priorities 
among the different types of failed machines. They 
have to deal with various factors such as costs, failure 
and repair time distributions, on-hand spare 
inventories, machine shortages, external customers 
demand, etc. Nevertheless, under certain 
assumptions, this seemingly complex scheduling 
problem can be efficiently solved using a simple priority 
rule. 

We model the operations at the maintenance 
department as a ''single server multiclass finite 
population queueing system''. Within this framework, 
each population corresponds to a fleet of machines as 
well as the corresponding spares, and the single server 
corresponds to a repair shop that can serve one failed 
machine at a time. Thus, broken machines form parallel 
queues at the service facility, one queue per 
population, and the server must decide to which queue 
to switch each time a repair service is completed. This 
problem is commonly referred to as the ''server 
scheduling problem'', which we optimally solve using 
Markov decision theory. However, it is not easy to 
obtain and implement the optimal solution for real 
scheduling problems, and so we propose an effective 
heuristic approach. 

It is important to distinguish between infinite and 
finite populations when dealing with server scheduling 
problems. In general, simple (and often static) priority 
rules are optimal for infinite population models. 
Particularly, it is optimal to provide service in 
accordance with the cµ rule when demand processes 
are Poisson [1]. Surprisingly, the cµ rule neither 
depends on the arrival rates (failure rates in our model)  

 nor on the number of customers (machines in our 
model) in each queue. For this reason, the cµ rule has 
gained much popularity within the queueing theory 
community. Unfortunately, this rule is not necessarily 
optimal for finite population models. References [2]-[3] 
have established certain monotonicity conditions, that 
we shall discuss later, which ensure the optimality of 
cµ-like priority rules in finite population settings, but 
without any consideration of spares. 
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The models in [2]-[3] are restricted to the 
exponential repair time distributions. Similar models 
have been examined in [4]-[6] for general distributions. 
Reference [7] considered the repair shop problem with 
spare ma-chine inventories under the exponential 
repair time assumption. The main contribution of our 
paper is to extend [7] to the more practical case with 
generally distributed repair times. This extension is a 
novel contribution to this important area, which is more 
realistic than the ''memoryless'' exponential service 
time considered e.g. in [7]. Besides the distributional 
assumption, our paper notably differs from [7] in the 
calculation of inventory holding costs. Inventory holding 
costs are charged at a constant rate throughout the 
infinite planning horizon in [7]. We only charge the 
holding cost for the machines which are operable but 
''idling'' in the spares inventory. This is a more realistic 
assumption than charging a holding cost for the 
operating machines. Moreover, it is usually much more 
costly to have an idle repaired machine in the spares 
inventory rather than a failed machine in the repair 
shop. This is the case, as pointed out by [8], of repairing 
the navigation systems used by the U.S. Air Force. We 
also propose a simple heuristic scheduling policy 
which, under reasonable assumptions, yields near-
optimal performance. It is worth mentioning that the 
special case which considers a single fleet of 
machines, also referred to as the machine interference 
problem with spares, has been first studied by [9]. The 
authors carried out their analysis in the Laplace 
transform domain using the supplementary variable 
technique. In contrast, we apply a time-domain 
approach, which does not require any inverse of the 
Laplace transform results. Particularly, a Markov 
renewal theory approach is applied in our paper to 
derive the expected sojourn times, the expected costs, 
and the transition probabilities which are required 
elements for the semi-Markov decision process 
formulation. 

While our research is motivated by 
maintenance/repair applications, the results of this 
paper are also relevant for other applications. In fact, 
our model can be viewed as a ''two-stage closed 
queueing network'' which appears in several contexts. 
For instance, this framework has been used by [10] for 
modeling performance in computer and communication 
systems and by [11] for modeling operations in 
shipbuilding plants. Another important aspect, as 
discussed in [12], is the interrelationship between the 
finite population queues with spares and the infinite 
population queues with finite waiting capacity. 

The rest of the paper is organized as follows. In 
Section II, we formally describe the repair shop 
scheduling problem. In Section III, we derive the 
elements of the semi-Markov decision process and 
present a computational approach based on the value 
iteration algorithm. Our heuristic scheduling policy is 
discussed in Section IV. We provide numerical results 
in Section V and conclude the paper in Section VI. 

II.PROBLEM DESCRIPTION 

Consider a system with m fleets, indexed by r, and 
a single repair shop responsible for fleets' 
maintenance. Define the set ℳ = {1, .,m}. Fleet r∈ ℳ 
can operate up to Mr identical machines at any given 
time. These machines have exponentially distributed 
failure times with time-homogeneous rate 𝜆r. The failed 
machines are immediately sent to the repair shop 
where one machine can be served at a time in a 
nonpreemptive manner. So, the arriving machines 
must queue for service if the repair shop is busy. 
Specifically, the machines belonging to fleet r, i.e. type 
r machines, must wait in queue r, r∈ ℳ. Hence, m 
parallel queues compete for the same repair server. 
We model the repair time of a type r machine as a 
random variable Tr with distribution function Fr, density 
function fr, and mean 1/µr. It is assumed that all failure 
and repair times are mutually independent. 

Each fleet r keeps its own spare machine inventory 
so that a broken machine is immediately replaced by a 
spare machine, if available in stock. The base-stock 
policy with parameter Sr≥0 is used to control such 
inventory. That is, a repair request is sent to the repair 
shop as soon as a machine fails in fleet r. This implies 
that the repair shop cannot idle while repair request(s) 
are pending. Note that the repair shop can have up to 
Kr := Mr + Sr repair requests from fleet r. After repair 
completion, a type r machine joins the spare machine 
inventory if exactly Mr machines are operating in fleet r. 
Otherwise, it immediately starts operating. It is 
assumed that the repaired machines become as-good-
as-new, i.e. perfect repair. 

We assume the following cost structure which is 
standard in many inventory-queueing control problems. 
Fleet r incurs an inventory holding cost at constant rate 
hr per spare machine available in stock (up to Sr 
spares) and a downtime cost at constant rate cr per 
machine shortage occurrence (up to Mr shortages). 
The repair shop seeks a scheduling policy minimizing 
the expected sum of holding and shortage costs. 

The problem considered in this paper naturally 
arises in many business environments. For example, a 
typical discrete part manufacturer uses CNCs 
(computer numeric control machines) and AGVs 
(automated guided vehicles), among other equipment, 
for the processing and handling of materials. The 
throughput of finished products is affected when, e.g., 
a CNC and/or an AGV breaks down. Hence, the 
manufacturer keeps safety stock of such critical 
equipment in order to avoid disruptions. Power 
generators and fleets of trucks in mining and logistics 
companies are other examples. 

III.MODEL 

In this section, we develop a mathematical model 
for the repair shop scheduling problem. The long-run 
average cost is chosen as the optimization criterion, i.e. 
we aim at minimizing the expected holding plus 
downtime cost per unit time. The scheduling problem 
can be formulated as an infinite-horizon semi-Markov 
decision problem. This framework requires the 
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specification of (a) the state and policy space, (b) the 
expected single-stage costs, and (c) the transition 
probabilities (we refer to [13] for an excellent treatment 
of Markov decision theory). 

A.State Space and Scheduling Policies 

Recall that the repair policy is nonpreemptive. This 
implies that scheduling decisions can only be made at 
time instances when a failed machine (of any type) 
completes its repair service or when a failed machine 
(of any type) finds the repair shop idle upon its failure. 
These time instances are the decision epochs. 

The first step in developing the decision model is to 
describe the system state at the decision epochs. An 
intuitive state description is the number of failed 
machines in each of the m queues. In fact, the repair 
server would check the length of these queues before 
deciding which machine type to repair next. Note the 
irrelevance of the information as to how long each 
machine has been operating prior to a decision epoch 
(i.e. the machine age). This is due to the memoryless 
property of the exponentially distributed machine failure 
times as well as the perfect repair assumption. Another 
key implication of the memoryless property is that the 
stochastic process describing the number of failed 
machines in each queue at the decision epochs is a 
Markov renewal process. 

Denote the state space by 𝒮, where 𝒮 = {0, ., K1} ×
⋯ × {0, ., Km}. Hence, x∈ 𝒮 is an m-dimensional vector 
whose rth element, xr, is the number of failed type r 
machines. Now, we define the scheduling policies of 
interest. Let 𝒜 = {0,1, .,m} be the set of scheduling 
actions. Here action ''0'' means do-nothing, action ''1'' 
means repair a type 1 machine, action ''2'' means repair 
a type 2 machine, and so on. Let 𝒜(x)⊂ 𝒜 be the set 
of permissible scheduling actions in state x. It follows 
by the non-idleness nature of the repair policy that 

 

where 0 is the m-dimensional zero vector and 𝕀{𝛾} 
is the indicator function, i.e. 𝕀{𝛾} = 1 if the condition 𝛾 is 
true and 𝕀{𝛾} = 0 otherwise. For example, if the repair 

shop maintains two fleets of machines (m = 2) then, 

 

A stationary scheduling policy π: 𝒮 → 𝒜 prescribes 
an action πx∈ 𝒜(x) whenever the system is found to be 
in state x∈ 𝒮. The collection of all stationary, non-idling, 
and nonpreemptive scheduling policies is denoted by 
Π. 

B.Preliminary Queueing Analysis 

In this section, we analyze the queue lengths 
process while some failed machine is undergoing 
repair. Hence, suppose that x∈ 𝒮\{0} at the current 
decision epoch and that action a≠0 is taken, i.e. at least 
one queue is nonempty and a type a machine is 
selected for repair at the time origin . 

Let Q(t) = (Q1(t), .,Qm(t)) be the queue lengths vector 
at time t, where Qr(t) denotes the number of failed 
machines in queue 𝑟 ∈ ℳ at time t. The various queues 
evolve independently of one another while a particular 
repair service is in-progress. Therefore, they can be 
examined in isolation. For each queue, define the 
stochastic process Qr = {Qr(t) : t≥0} on state space {0, ., 
Kr} with transition probability function, 

 

The transition function depends on x only through 
xr, and its derivation is deferred to Appendix A. 

We examine the random amount of time during 
which queue r has z machines while the current repair 
is in-progress. Specifically, we are interested in the first 
moment of this random duration, Ψr

x,z(a), which also 
depends on x only through xr. This quantity is essential 
for later evaluation of the expected single-stage costs. 

It is obvious that Ψr
x,z(a) = 0 when z < xr because 

Qr(t) is nondecreasing during any repair time. Also, the 
following equality holds, 

 

Let 𝔼x denote the expectation conditioned on Q(0) 
=x.  
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One way to solve problem (7), or equivalently 
problem (8), is using the value iteration algorithm. In 
fact, each iteration of this algorithm produces bounds 
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on the minimum average cost g. The algorithm 
terminates when the relative distance between these 
bounds is less than a prespecified stopping parameter 
ϵ. The solutions obtained using this algorithm are called 
ϵ-optimal solutions. However, the uniformization 
technique should be applied in order to transform our 
original continuous-time scheduling problem into a 
discrete-time counterpart (see [13] for more details). 

For all x∈ 𝒮, let vx
(n) be the value function associated 

with state x at the nth iteration of the algorithm. This 
quantity can be thought of as the minimum total 
expected cost that the system would incur if it starts in 
state x and n decision epochs are left. It is worth 
mentioning that these decision epochs could be 
fictitious in the sense that the state transitions could 
also be fictitious in the transformed discrete-time 
problem. The value iteration algorithm for the discrete-
time problem is as follows [13]: 

 

 

This algorithm 
yields 

the ϵ-
optimal  

avera
ge 

c
ost 

 𝑔∗ ∈

[𝐿𝐵(𝑛∗), 𝑈𝐵(𝑛∗)] 

a
t the last iteration 𝑛∗. 

T
he 

ϵ-optimal scheduling policy is obtained by setting 𝜋𝐱
∗, 

for each x∈ 𝒮, to the action a minimizing the right side 
of (9). Note that both g and are also ϵ-optimal for the 
original continuous-time scheduling problem. 

IV. 
 
HEURISTIC SCHEDULING   

The semi-Markov  decision approach  discussed 

in the previous section may not be appealing for a 
couple of reasons. First, implementing the value 

iteration algorithm requires the knowledge of the exact 
repair time distributions plus the evaluation of the 
integrals in (2) and (6). Second, this approach poses 
computational problem for practical values of m, i.e. the 
number of fleets, due to the curse of dimensionality. 
Last, the obtained optimal scheduling policy does not 
necessarily possess a simple structure, as illustrated 
by the next example, and hence, it may be difficult to 
implement. 

Example 1 Consider a system with two fleets of ma-
chines (m = 2). The various parameters are given in the 
following table, where it is assumed that the re-pair time 
for both machine types is Erlang with three stages. The 
policy generated by the value iteration al-

 

gorithm with ϵ := 0:001 is shown in Figure 1. Indeed, 
Figure 1 indicates that the obtained policy is not simple 
in the sense that it is not monotone in the length of 
queue 2 (i.e. x2). For instance, when x1 = 8, the optimal 
policy selects a type 2 machine for repair if x2 = 5 and 
a type 1 machine for repair if x2 = 6, which is a 
counterintuitive result. 

 

Therefore, a heuristic approach to our scheduling 
problem is more appropriate. In particular, we seek a 
policy that can be quickly computed, has managerial 
appeal, and provides near-optimal performance. As 
previously mentioned, [3] established conditions under 
which static priority rules are optimal for the special 
case: Sr := 0 and exponentially distributed Tr for all 𝑟 ∈
ℳ. For instance, if the system parameters satisfy the 
following monotonicity conditions: 
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then it is optimal to repair the machine type with the 
highest index 𝑐𝜇/𝜆 among the machine types awaiting 
re-pair. Call this strategy the 𝑐𝜇/𝜆 rule. Like the cµ rule, 

the 𝑐𝜇/𝜆 rule does not depend on the number of failed 
machines in each queue. Unlike the cµ rule, the 𝑐𝜇/𝜆 
rule depends on the failure rates. This policy has the 
following intuitive explanation. If all fleets have the 
same product cµ, then the repair priority is given to the 
machine type with the smaller failure rate. If all fleets 
have the same ratio 𝑐/𝜆, then the repair priority is given 
to the machine type with the shortest processing time. 
If all fleets have the same ratio 𝜇/𝜆, then the repair 
priority is given to the machine type with the highest 
shortage cost. Observe that Example 1 does not satisfy 
the monotonicity conditions. Let us show an example 
that satisfies these conditions. 

 

Example 2 Consider a system similar to that in 

Example 1 except that 𝜆2 equals to 0.29 instead of 0.3, 
so the monotonicity conditions are now satisfied. The 
policy generated by the value iteration algorithm with ϵ 
:= 0:001 is shown in Figure 2. The obtained policy 
shows that it is not necessarily optimal to give priority 
to type 2 machines, although such machines have a 
higher 𝑐𝜇/𝜆 index. So, the 𝑐𝜇/𝜆 rule is not necessarily 
optimal for a repair shop scheduling problem with spare 
machines. 

 

Importantly, the 𝑐𝜇/𝜆 rule in Example 2 does not 
give priority to type 2 machines when the system is 
short of type 1 machines but not short of type 2 
machines, as indicated by the light shaded area in 
Figure 2. However, it does give priority to type 2 
machines when the system is short of both machine 
types, as indicated by the dark shaded area in Figure 
2. For this reason, we suggest a state-dependent 𝑐𝜇/𝜆 

rule, so that priority is given to the machine type with 
the highest 𝑐𝜇/𝜆 index provided the system is indeed 
short of this machine type. Of course this strategy does 
not ensure optimality even when the monotonicity 
conditions hold (one can construct counter-examples). 

Now, let us focus on the region of the state space 
where the system is not short of any machine type (e.g. 
the shaded area in Figure 1). Our numerical 
experiments, not shown in this paper, reveal that the 
optimal solution in this region depends in a complicated 
way on both the system parameters and the queue 
lengths. This is not consistent with our quest for an 
easy-to-implement priority rule. Consider the very 
special case in which all fleets have the same 
parameters. Then, it is intuitive to give repair priority to 
the fleet having the largest number of broken machines 
at the repair shop. Thus, whenever the system is not 
facing shortages, we suggest the simple priority rule 
whereby the server selects the machine type from the 
longest queue to be re-paired next. We choose the 
machine type with the lowest inventory holding cost as 
the tie breaking rule (other criteria are possible). In light 
of the above discussion, we propose a heuristic 
scheduling policy, b, defined as follows. 

 

This policy is dynamic as it depends on the queue 
lengths x, but it uses limited data, namely the failure 
rates, service rates, holding costs, and shortage costs. 

V.NUMERICALRESULTS 

The objective of this section is to test the 
performance of the proposed policy and to gain further 
insights into the scheduling problem. We consider 
systems with three fleets of machines (m = 3) such that 
𝜆1 ≤ 𝜆2 ≤ 𝜆3 and 𝜇1 ≤ 𝜇2 ≤ 𝜇3, i.e. conditions C1 and 
C2 hold. Presumably, type 1 (type 3) machines are the 
most (least) reliable, but at the same time have the 
longest (shortest) repair time due to their complexity 
(simplicity). In addition, type 1 (type 3) machines are 
expensive (cheap) pieces of equipment whose avail-
ability is most (least) important. Accordingly, the cost 
structure is such that ℎ1 ≥ ℎ2 ≥ ℎ3 and 𝑐1 ≥ 𝑐2 ≥ 𝑐3. 
These assumptions regarding the system parameters 
are fairly reasonable. However, it is necessary to 
emphasize that a naïve priority rule giving type 1 (type 
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3) machines the highest (lowest) priority may not be 
optimal.  

The expected long-run average cost, 𝑔, 
corresponding to �̂� can be evaluated through the value 
iteration algorithm, where (9) becomes 

 

for all x∈ 𝒮 and 𝑛 ≥ 1. Denote by �̃� the scheduling 

policy corresponding to the 𝑐/𝜆 rule, i.e. �̃�𝐱 ≔ 0 if 𝐱 = 𝟎 
and �̃�𝐱 ≔ 𝑎𝑟𝑔max

𝑟∈ℳ
{𝑐𝑟𝜇𝑟 𝜆𝑟⁄ : 𝐱𝑟 > 0} otherwise. Let �̃� be 

the corresponding long-run average cost. Then �̃� can 
be evaluated in the same way as 𝑔 by replacing �̂�𝐱 in 

(10) with �̃�𝐱. Recall that the value iteration algorithm 

produces bounds 𝐿𝐵(𝑛∗) and 𝑈𝐵(𝑛∗) at the last iteration 
𝑛∗. For simplicity, we take the long-run average cost for 
each policy as the midpoint of the interval 

[𝐿𝐵(𝑛∗), 𝑈𝐵(𝑛∗)]. 

 In the first experiment, we specify the relevant 
system parameters in such a way that condition C3 is 
also satisfied, i.e. the monotonicity conditions hold. 
Suppose that ℎ1 = 0.5, ℎ2 = 0.4, ℎ3 = 0.3, 𝑐1 = 1.5, 𝑐2 = 
1.2, 𝑐3 = 1.0, 𝜇1 = 2.7, 𝜇2 = 4.2, and 𝜇3 = 5.5. Table 1 
shows the calculated average cost for each policy for 
different combinations of 𝑀𝑟, 𝑆𝑟, and 𝜆𝑟 (all repair times 
are Erlang random variables with eight stages). Runs 
1-3 show that �̂� and �̃� have identical performance when 
there are no spare machine inventories, which is an 
obvious result. Most importantly, these runs show that 
the 𝑐𝜇/𝜆 rule yields optimal solutions. This suggests 
that the optimality results of in [3] might equally be valid 
for non-exponential repair/service time distributions 
(though a more rigorous treatment is required for 
proving this). Runs 4-9 indicate that the optimality gap 
is small for our proposed policy and large for the 𝑐𝜇/𝜆 
policy. Moreover, these runs reveal an interesting 
pattern associated with policy �̂�, for which the 
optimality gap is larger for less congested systems, as 
illustrated e.g. by run 4 vs. run 6. A plausible 
explanation for that is as follows. When the congestion 
level is low, the queue lengths process {Q(t) : t _ 0} 
would spend considerable time in the region of the 
state space in which the system is not facing shortages. 
However, our policy �̂� is only based on a ''coarse'' 
priority assignment in this region of the state space. 
Thus, sub-optimality is understandably more significant 
in less congested repair shops. This in turn presents an 
opportunity for developing a ''fine'' repair priority 
assignment when the fleets are not short of machines. 
For this, it is helpful to thoroughly examine the structure 
of the optimal policy, which we leave for future work. 

 Now, let the relevant system parameters be such 
that the monotonicity conditions do not hold, namely, 
condition C3 is violated. Actually, there is no reason for 

this condition to hold in practice. Suppose that 𝑀1 = 5, 

𝑆1 = 4, 𝑀2 = 9, 𝑆2 = 3 𝑀3 = 2, 𝑆3 = 1, 𝜆1 = 0.25, 𝜆2 = 
0.30, 𝜆3 = 0.32, 𝜇1 = 2.7, 𝜇2 = 4.2, and 𝜇3 = 5.5. Table 
2 shows the obtained results for different combinations 
of ℎ𝑟 and 𝑐𝑟 (all repair times are Erlang random 
variables with eight stages). Once again, these results 
provide strong evidence that our proposed policy is 
near-optimal and that it outperforms the 𝑐𝜇/𝜆 rule. Also, 
as the monotonicity conditions break, we see that the 
performance of �̂� slightly deteriorates, whereas the 
performance of �̃� severely deviates from the optimum. 

VI.CONCLUSION  

 In this paper, we have examined the server 
scheduling problem in a repair shop with spares. The 
system consists of multiple heterogeneous fleets, 
where each fleet has both operating and spare 
machines. Both inventory holding and machine 
downtime costs have been incorporated. The goal is to 
assign repair priorities to the failed machines so as 
these costs are minimized. This problem has been 
formulated as a semi-Markov decision problem, and 
the optimal scheduling policy has been numerically 
computed using the value iteration algorithm. Due to 
long computational times and implementation 
difficulties of the optimal policy, we have proposed also 
a simple heuristic policy with the performance close to 
the optimum under reasonable assumptions about the 
given holding and downtimes costs, failure rates, and 
repair times. As previously mentioned, it would be 
insightful to examine the structure of the optimal policy 
in future research. An extension to non-exponential 
machine failure times would also be desirable as it 
would provide a more applicable scheduling model. 
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