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Abstract—Time series analysis is a recent field of 
studies. It studies the impact that time has on 
regular data. Therefore, it is possible to determine 
a certain rule to describe the time series 
mathematically. On the other side, in order not to 
focus on a certain rule, but to depend on 
randomness, a time series is described by motifs, 
which are patterns repeated throughout the time 
series. In their articles, Mueen et al. ([1][2][3][4]) 
presented four approaches to discover motifs in 
time series. Dhamo et al [5][6] presented an 
algorithm to improve accuracy and quality in motif 
detection and also compared distance such as 
CID [7] with Chouakria index[8] with CID [5], where 
a better performance was given by Chouakria 
index with CID. A successive improvement of this 
algorithm was presented in their article by Lin et 
al[9], which aimed to present the importance of 
normalization of subsequences in time series as a 
preprocess. In this article, we aim to improve in 
ulterior the quality in pattern discovery, 
independently from the indexes in subsequences. 
The use of Chouakria index with CID as similarity 
measure is used to provide more satisfactory 
results than others, such as CID, Euclid, etc. The 
criteria used for comparison is execution time, 
number of motifs discovered and mean distance 
of similar subsequences from the 1-motif. In all 
cases, the modification to the algorithm provided 
the same/better performance than the previous 
algorithm presented by Dhamo[5][6]. The codes 
and plots are made in R.   
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I.  INTRODUCTION  

Time series analysis is a wide field of studies that 
comprehends detecting features in time series, such 
as trend, periodicity, seasonality, etc, in order to fit a 
model that depends on time. On the other hand, 
researchers have pointed out that independently from 
values, times series’ behavior tends to be repeated in 
small intervals (motifs). The first to introduce motifs in 
time series was Mueen et al. [1][2][3][4], who 
presented four approaches to discover motifs in time 
series, such as Online motif discovery, k-motif 
discovery, enumeration of motifs of all lengths and 
fixed length. Moreover, the detection for similarity in 
motifs was made non-trivial. Besides these methods, 
another important one is 1-motif, which finds the most 
repeated pattern throughout the time series. An 

enhancement in results was achieved by Lin et al.[10] 
who proposed normalization of subsequences in time 
series in order to eliminate the effect that values had in 
pattern discovery. In the following years, the aim was 
not only to find pattern, but also to propose similarity 
distances, so as to minimize the effect of approximate 
values. One of the most efficient similarity measures is 
CID, proposed by Batista et al[7]. Another important 
similarity measure is also Chouakria index[8], which is 
a product of Euclid distance and a coefficient. A 
combination of CID and Chouakria index was firstly 
proposed by Dhamo et al[6] in the research related to 
1-motif. This similarity measure provided the best 
results according to a bigger number of similar 
patterns discovered in a time series, to a better quality 
but augmented the execution time due to its larger 
complexity.  The algorithm used by Dhamo et al[5][6] 
has in basis brute-force algorithm, which expands its 
search in a one-by-one comparison.     

II. TIME SERIES. MOTIF DISCOVERY ALGORITHM 

A. Concepts and basic definitions in time series  

Time series is an attempt to formalize specific 
phenomenon such as air temperature, water flows in a 
river, etc by gathering data regularly and elaborating 
them. 

 Definition 1 A time series   of length   is a set of 
data gathered in regular intervals               . 

An example of a time series is given in Fig.1. 

 

Fig.1. An example of a time series  

Two main characteristics of a time series are mean 
and standard deviation, defined as follows:  

Definition 2 Given a time series   of length  ,  

                its mean  ̅ is: 

 ̅  ∑   
 
                                                                (1) 

Definition 3 Given a time series   of length     
                the standard deviation        is: 
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      √
 

   
∑      ̅   

                                      (2) 

 It is understandable that both mean and standard 
deviation are numbers.  

B. Motifs in time series - basic concepts 

When trying to detect patterns in a time series, two 
principal indicators are the length of the pattern and 
the criterion used to compare whether two 
subsequences of a time series are or not similar and, 
moreover, the match should not be trivial. 

 Definition 4 Given a time series   of length  ,  
                a subsequence    of   with length 

  is defined as: 

                                                          (3) 

, where         and    . 

While comparing two subsequences    and   , to 

determine whether they are similar or not, distance is 
necessitated.  

Definition 5 A distance is a function that complies 
with the following properties: 

 Identity:                     

 Symmetry:                      

 Non-negativity:                 

 Transitive:                     
              

The most utilized distance is Euclid, but, in contrary 
to its wide use, provides dissatisfactory results, 
because it can not afford time series’ complexity. 
Therefore, a most common comparison mean is 
similarity measure. 

Definition 6 Euclid distance between two 
subsequences with length m,                
           and                          is the 

index, measured as below:  

    (     )  ∑              
                            (4) 

Definition 7 A similarity measure is a function that 
does not comply with one or more conditions to be a 
distance. 

C. Similarity measures 

In their studies, Dhamo et al[5][6]  compared the 
efficiency of many similarity measures, such as Euclid, 
CID, Chouakria index with Cid or Euclid. Even though 
Batista first proposed CID in 2012, better results were 
provided by the use of Chouakria’s temporal 
correlation coefficient (firstly proposed in 2008) in 
Chouakria’s index. Better results were gained by a 
combination of both.  

Definition 7 CID distance between two sub-
sequences                           and     

                      with length m from the time 

series T, is the index, measured as:  

    (     )       (     )
                   

                   
       (5) 

, where        is the Complexity Estimation for the 
subsequence   and is defined as: 

       ∑                  
                               

(6) 

Definition 8  Chouakria’s index between two sub-
sequences                          and     

                      with length m from the time 

series T, is the index which is measured as:  

    (     )  
 

   
   (     )

                        (7) 

, where     (     )  is the temporal correlation 

coefficient, defined as:  

            
∑                              

   

√∑                  
   √∑                  

   

    (8) 

and     ; and          may be Euclid,  etc. In 

their article, Dhamo et al. [6] proposed CID as 
similarity measure          and    . 

III. THE MOTIF DISCOVERY ALGORITHM. THE PROPOSED 

MODIFICATION 

A. The Algorithm to detect similar patterns in 
time series 

Even though discovering patterns in a time series 
may be lead in four main directions (according to 
Mueen et al. [1][2][3][3] there are these approaches: 
Online motif discovery, k-motif discovery, enumeration 
of motifs of all lengths and fixed length), the concern is 
to find those subsequences of the time series that 
repeat themselves throughout it. In their article, Lin et 
al. [9], proposed the normalization of subsequences in 
the algorithm to detect the 1-motif. The most suitable is 
the z-scores, which is defined as: 

Definition 9  Z-normalization of a time series T of 
length n is called a new time series of length n, 
described as 

  
         

     
                                                         (9) 

In time series, when comparing two subsequences, 
there should be determined a limit to when these 
subsequences can be considered similar. In their 
paper, Mueen et al [4] proposed a radius where, if the 
distance /measure index were in the radius, the two 
subsequences were to be considered similar. 
Formally: 

Definition 10 Given a time series   of length ,  
                  a radius and   ,   subsequences 

of   with length      is similar to    if and only if: 

                                                                 (10) 

, where    . 

Statistically, is almost 90% probable that a 
subsequence of length   of a time series has a small 
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distance (a high similarity) to the subsequence starting 
from         positions after it, for    . In other 
words, two adjacent subsequences are presumed to 
be closely related to each-other.  

 Definition 11 Given a time series   of length ,  
                  a radius and   ,    subsequences 

of   with length      is a trivial match to    if and only 

if  

 (      )    and                                    (11) 

Therefore, to find patterns in a time series, it is 
necessary to eliminate the influences that have 
adjacent subsequences. Moreover, by eliminating the 

trivial match      (      )   . Therefore, in the 

algorithm, the radius is applied on the minimal distance 
between two subsequences.    

Definition 12 Given a time series   of length ,  
                  a radius and   ,    subsequences 

of   with length     R’ is defined as  

      { (      )    }                               (12) 

, where                    

In their article, Dhamo et al.[6] established R to be 
defined as: 

  
      

√ 
 

 

√ 
                                                  (13) 

Therefore, the algorithm for 1-motif detection, is the 
following: 

 

 

 

 

 

Comparative approaches 

 

 

 

 

 

 

 

, where the function find_nr_similar_subseq_ 
without_adj) is described as: 

 

 

 

 

 

 

B. Modification in the algorithm to eliminate the 
influence of adjacency 

1) In the previous algorithm, there are two main 
problems: 

The algorithm can be forced to stop when reached 

the maximal possible number of detected motifs 
In a time series T of length n, the maximal number 

of subsequences similar to the 1-motif is calculated as: 

⌊
         

   
⌋  ⌊

   

   
⌋                                             (14) 

In other words, the maximal number can be 
reached if the 1-motif starts at position i=1 and every 
similar subsequence similar to it ends where another 
subsequence starts.  

For example, in a time series of length n=300 and 
m=30, the maximal number of subsequences similar to 
the 1-motif is expected to be:                         

⌊
      

  
⌋  ⌊      ⌋                                         (15) 

This means that we can use this formula to 
compare the maximal number of similar subsequences 
to be discovered to the global maximum. If the 
maximum is reached, the algorithm stops the search. 
This enhancement is introduced in the point (15.) of 
the algorithm 1-motif detection. 

2)  In the function that excludes adjacent 
subsequences, the algorithm does not take into 
consideration a closer proximity of a subsequence 
starting at the following positions. 

 Suppose that, during pattern discovery, are found 
to be similar to it subsequences starting at the 
following indexes                    . The 
algorithm proposes to remove from the set all the 
similar subsequences with starting index          
          and to keep as the most similar the i-th 
subsequence which (not surely) might be less similar 
than another subsequence belonging to the excluded 
ones. 

 What we propose is to make an ordination of all the 
lengths between the 1-motif and similar subsequences 
in crescent order. Therefore, the selection will not be 
made in random, but will be based on proximity in 
similarity, independently from the position. Therefore, 
the algorithms will be: 

The mean distance in the set of subsequences similar to 

1-motif tends to increase. 

 

 

 

 

    

 

 

1-Motif detection algorithm 
Motif detection =function(T,m) 

1.#n=length(T) 

2.#𝑅  
 

√𝑚
 

3. stand={ Ai=
𝑇 𝑖    𝑖 𝑚     𝑚𝑒𝑎𝑛 𝑇 𝑖    𝑖 𝑚     

𝑠𝑑 𝑇 𝑖    𝑖 𝑚     
 𝑖     𝑛  𝑚    } 

4.R’=min{d(Ai,Bj)}, Ai=stand[i, 1:m], i=1: (n-m+2) and j=(i+1): (n-
m+2) 
5. global_max=0, sim_sub=c(),start_index=0 
6.for i=1: (n-m) 
7.  Ai=stand[i, 1:m]; index=c() 
8. for j= (i+1) : (n-m+1) 
9.         Bj=stand[j, 1:m] 
10.        if d(Ai, Bj)<R’ then inxex=c(index,j) 
11.   end for 
12.  no_adj=find_nr_similar_subseq_without_adj(i,index,m) 
13. if(reached : global_max) {sim_sub=index,start_index=i} 
14.end for 

15.print start_index, sim_sub 
end function 

 

find_nr_similar_subseq_without_adj algorithm 
find_nr_similar_subseq_without_adj=function(i,index,m) 

1.#n=length(index) 
2.no_adj=c(i); m=1 
3.for j=2:n 

4. if index[j] - no_adj[k] >m-1,  𝑘         
5.      then no_adj=c(no_adj, index[j] )   
6.  end if 
7.end for 
8.return no_adj  

end function 

 

find_nr_similar_subseq_without_adj algorithm 
find_nr_similar_subseq_without_adj=function(i,index,dist,m) 

1.#n=length(index);  
2.sort(index) #according to their distance 
3.no_adj=c(i); m=1 

4.for j=2:n 
5. if abs(index[j] - no_adj[k] )>m-1,  𝑘         
6.      then no_adj=c(no_adj, index[j] )   
7.  end if 

8.end for 
9.return no_adj  

end function 
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The main algorithm, will be transformed into: 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to make a better comparison between the 
two algorithms, all the tests were held having the 
Chouakria index with CID as similarity measure. 

 
IV. COMPARING THE TWO ALGORITHMS  

 

When something changes, it means that there 
should be made some comparison in order to 
determine whether the change provided better 
performance or not. The criteria utilized to compare the 
two algorithms, are the following: Number of similar 
subsequences similar to 1-motif, Execution time of the 
algorithm, Mean distance of similar subsequences to 
the 1-motif and Mean time to detect a similar 
subsequence. The tests were made in numerous time 
series. 

A. Number of similar subsequences to the 1-
motif 

The potential of the algorithm is firstly described by 
the ability to detect similar subsequences to the 1-
motif. The number of similar subsequences to the 
1_motif, is described as: 

                                              (16) 

, where       are not adjacent.  

In 93.55% of the cases, the ability of the algorithms 
to discover similar subsequences is equal.  Graphical 
results are given in Fig.2.    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Comparing the efficiency of the algorithms 

Even though in 93.5% of the cases there is no 
difference in the number of similar subsequences to 
the 1-motifs found, there is a difference in the set of 
the selected subsequences in 37.8% of the cases.    

TABLE I.  DIFFERENCE IN SUBSEQUENCES  

No of 
differences 

% different 

1 40.9 

2 27.3 

3 9.1 

4 13.6 

>4 9.1 

 

It is clear that the potential of the Modified 
Algorithm does not change from the potential of the 
Unmodified Algorithm. 

B. Comparing the mean distance of the 
subsequences from the 1-motif  

While altering the algorithm, the result will obviously 
differ. These differences impact the efficiency of the 
performance. Another important factor in affecting the 
performance of the algorithm is the mean distance 
from the 1-motif, which is described as follows: 

          
 

 
∑  (         )

 
                            (17) 

, where    is the 1-motif,       is the k-th 

subsequence similar to the 1-motif and   the number of 
similar subsequences to the 1-motif, equal to (16).   

In 58.1% of the cases, the mean distance figures 
out to be the same. In 25.8% of the cases, the mean 
distance provided by the Unmodified Algorithm is 
greater than the one provided by the Modified 
Algorithm (translated as a better performance of the 
Modified Algorithm) and in the remaining cases 
(16.1%) the mean distance provided by the 

1-Motif detection algorithm 
Motif detection =function(T,m) 

1.#n=length(T) 

2.#𝑅  
 

√𝑚
 

3. stand={ Ai=
𝑇 𝑖    𝑖 𝑚     𝑚𝑒𝑎𝑛 𝑇 𝑖    𝑖 𝑚     

𝑠𝑑 𝑇 𝑖    𝑖 𝑚     
 𝑖     𝑛  𝑚    } 

4.R’=min{d(Ai,Bj)}, Ai=stand[i, 1:m], i=1: (n-m+2) and j=(i+1): 
(n-m+2) 

5. global_max=0, sim_sub=c(),start_index=0 
6.for i=1: (n-m) 
7.  Ai=stand[i, 1:m]; index=c() 
8. for j= (i+1) : (n-m+1) 

9.         Bj=stand[j, 1:m] 
10.        if d(Ai, Bj)<R’ then inxex=c(index,j) 
11.   end for 

12.  no_adj=find_nr_similar_subseq_without_adj(i,index,m) 
13. local_max=(n-i+1-m)/(m-1) 
14.   if(reached : global_max) sim_sub=index,start_index=I  

15.  if(local_max<global_max) then break 
16.end for 
17. print start_index, sim_sub 

end function 
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Unmodified Algorithm provides lower ciphers. 
Graphically, the situation is presented in Fig.3.  

 

 

 

 

 

 

 

Fig.3: Comparing the efficiency of the algorithms 

By dividing the data into two groups: the group 
where the number of similar subsequences is not the 
same and where the number of subsequences is the 
same but changes the subsequences discovered, the 
situation would be like it follows: 

TABLE II.  WHERE MEAN DISTANCE IS SMALLER (IN PERCENTAGE) 

Result 
in favor of 

No of similar subsequences (%) 

Different The same 

Mod Alg 75 59.1 

Unmod 
Alg 

25 40.9 

 

It is clear that in all cases, the Modified Algorithm 
has shown better performance than the Unmodified 
Algorithm.  

C. Execution time 

The most important factor that affects the 
performance of the algorithm related to its’ complexity, 
is the Execution time, the time required by the system 
to give a response. 

In R, to measure the elapsed time, in the beginning 
and at the end of the algorithm in R, are added the 
following commands:   

ptm <- proc.time() 

proc.time() - ptm 

These commands give three parameters:  

 user: The necessary time needed to the 
system to execute user’s instruction   

 system: The time system requires to call 
processes 

 elapsed : The total time (not necessarily 
the sum of user  time+ system time) 

The parameter we used to compare the 
beneficence of the algorithms is the user time. 

In 98.4% of the cases, the execution time was in 
favor of the Modified Algorithm. In 1.6%, the result was 

in favor of the Unmodified Algorithm. The comparison 
is graphically shown in Fig. 4. 

 

 

 

 

 

 

 

Fig.4: Comparing the efficiency of the algorithms 

We compare the mean time to detect a 
subsequence, determined as below: 

         
 

 
                                                    (18) 

, where   is the elapsed time and   the number of 
similar subsequences to the 1-motif. The result is 25% 
in favor of Modified Algorithm, 25% in favor of the 
Unmodified Algorithm and in 50% of the cases; the 
mean time to detect a subsequence was equal. 

D. Comparing the quality of the similar 
subsequences detected 

Another approach of comparison between the two 
algorithms is the result itself, the set of subsequences 
similar to the 1-motif proposed by each algorithm: The 
Modified and the Unmodified one.  An example to how 
the result differs graphically is given in Fig.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Screenshot to compare the quality of the 
similar subsequences to the 1-motif 

In almost every aspect, the two modifications that 
were made in the algorithm brought a better 
performance than the old version in almost every 
aspect: The execution time was reduced by 1.078 
times. Moreover, the ability of the algorithm was 
almost unchanged. What is more, the modification 
made possible to reduce the mean distance of the 
subsequences from the 1-motif by more than 40%.     
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