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Abstract—In this paper, we develop the integral 
mean value method (IMVM) for solving Fredholm 
integral equations of the second kind on the half 
line. The most important point of the IMVM is 
simplicity, accuracy and competency. However 
the mean value theorem is not defined for 
improper integrals, we will apply the integral mean 
value theorem indirectly to achieve the required 
linearly independent equations in IMVM. We solve 
some examples to illustrate the applicability and 
simplicity of the method. The numerical results 
show that the method is efficient and accurate.   
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I.  INTRODUCTION  

Integral equations appear in different kind and 
describe various events in science and engineering. 
Many initial and boundary value problems associated 
with ordinary differential equation (ODE) and partial 
differential equation (PDE) can be transformed into 
various kinds of integral equations [1, 2, 3, 4]. Since 
the considerable amount of natural phenomena in the 
real world are related to the parameters defined on 
semi-infinite or infinite interval, we need to the efficient 
methods to solve the equations which are involved to 
the improper integrals. Integral equations on 
unbounded domain can be solved by not many 
numerical and analytical methods and the efforts to 
find the qualified methods continue as a case study. In 
this paper, we are interested in solving the following 
Fredholm integral equations of the second kind on the 
half line 

 ( )   ( )   ∫  
 

 

 (   ) ( ( ))           [   )  

                                                                                   (1) 

where   is a real number, also  ,   and   are given 
continuous functions on [   ) , and  ( )  is an 
unknown function to be determined. The improper 
integral in (1) is considered as 

   
   

∫  
 

 
 (   ) ( ( ))                                                (2) 

and its value is assumed to exist.  The various 
numerical methods have been proposed for solving the 
unbounded Fredholm integral equations which apply 
Galerkin method with Laguerre Polynomials [5], 
quadrature methods [6, 7], projection methods [8], 
interpolation method based on Hermite zeros [9], 
Nyström’s method based on composite quadratures 
[10], Nyström’s method based on a product quadrature with 

zeros of Laguerre polynomials [11], graded mesh methods 

[12] and many other methods [13, 14, 15, 16, 17]. This 
study is an effort to generalize the integral mean value 
method (IMVM) which is established by Avazzadeh et 
al. [18, 19] for solving linear and nonlinear Fredholm 
integral of the second kind on the half line. The main 
idea is deformation of improper integral to new proper 
integral on the bounded interval which will be prepared 
to applying the mean value theorem. According to the 
integral mean value method, the integral equation will 
be reduced to the system of algebraic equations. The 
obtained system can be solved by Newton’s method or 
other well-known efficient methods.   

This paper is organized as follows: Section 2 briefly 
reviews the description of the IMVM based on [18] for 
solving the Fredholm integral equations. In Section 3, 
we develop the IMVM to solve Fredholm integral 
equations on the half line. Some numerical 
experiments are given in Section 4 to show the 
efficiency of the proposed method. Finally, a brief 
conclusion is drawn in Section 5.  

 

II.  DESCRIPTION OF IMVM 

Consider the Fredholm integral equation of the 
second kind as follows  

 ( )   ( )   ∫  
 

 

 (   ) ( ( ))           [      

                                                                             (3) 

where   is a real number, also  ,   and   are given 

continuous functions, and   is unknown function to be 
determined. Now we apply the integral mean value 
theorem for solving the above integral equation. 
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Mean value theorem for integrals [18,19]. If  ( ) is 
continuous on [    , then there is a point    [      
such that  

∫  
 

 
 ( )   (   ) ( )                                          (4) 

Now we describe how (3) can be solved using the 
integral mean value theorem. By applying (4) into (3) 
we can get 

 ( )   ( )   (   ) (   ( )) ( ( ( )))             (5) 

where  ( )  [     and   [    . 

Obviously, the integral ∫  
 

 
 (   ) ( ( ))   depends on 

  and the number   generally must be dependent on 

the variable  . That is, the number   should be a 

function with respect to   and here we write it as  ( ). 
In practice, to be able to implement our algorithm, we 
take  ( ) as a constant [19]. This assumption results in  

 ( )   ( )   (   ) (   ) ( ( ))                      (6) 

where   [    . Therefore, finding the value of   and 

 ( ) lead to obtain the solution of integral equation. 

The way to find   and  ( ) is reported from [18] as the 
following algorithm 

Algorithm    

i) Substitute   into (6) which gives  

 ( )   ( )   (   ) (   ) ( ( ))                         (7) 

    ii) Replace (6) into (3) which gives 

 ( )   ( )   ∫  
 

 
 (   ) ( ( )   (   )  

                (   ) ( ( )))                                            (8) 

   iii) Let   into (8) which leads to 

 ( )   ( )   ∫  
 

 
 (   ) ( ( )   (   )  

              (   ) ( ( )))                                           (9) 

   iv) Solve the obtained equations ( )  and ( ) 
simultaneously.  

 Consecutive substitutions provide the needful linearly 
independent equations. For solving the above 
nonlinear system, we can use the various methods 
[20]. Here, Newton’s method is used to solve the 
obtained system. 

 

III. IMVM FOR SOLVING FREDHOLM INTEGRAL 

EQUATIONS ON THE HALF LINE 

  Consider the following infinite integral equation of the 
second kind 

 ( )   ( )   ∫  
 

 
 (   ) ( ( ))           [   )     

                                                                                (10) 

where   is a real number, also  ,   and   are given 
continuous functions on [   ). For solving the above 
equation, we apply the integral mean value theorem 
indirectly because the mean value theorem is not valid 

for unbounded intervals. Firstly, we change variables   
and   to obtain an integral equation on (     as follows 

                          [   )     (           (11) 

which gives 

 (    )   (    )  

  ∫  
 

 

 

 
 (         ) ( (    ))    

                                             (                             (12) 

To easier notation, we rewrite the above equation as 
follows  

 ( )   ( )   ∫  
 

 
 (   ) ( ( ))           (       

(13) 

where 

 ( )   (    )     ( )   (    )      

 (   )  
 

 
 (         )                                          (14) 

The function  (   ) ( ( )) is continuous on (    , but 

as you know (     is not a compact interval and 
consequently we cannot use the mean value theorem. 
For overcoming this problem we assume that     is 
a sufficiently number close to zero, then the equation 
(13) can be reformed as follows: 

 ( )  

 ( )   ∫  
 

 
 (   ) ( ( ))   

                             ∫  
 

 
 (   ) ( ( ))           (        (15) 

It is obvious that:  

   
    

∫  
 

 
 (   ) ( ( ))                                             

(16) 

and then the relation (15) will be substituted as: 

 ( )   ( )   ∫  
 

 
 (   ) ( ( ))         [           

(17) 

Now we implement the IMVM algorithm described in 
previous section step by step on (17). According to the 
method we will have   and  ( ) as the unknowns and 
two algebraic equations which can solve by Newton’s 
method. Note that the constructed  ( ) based on the 
following form 

 ( )   ( )   (   ) (   ) ( ( ))                     (18) 

has to be transformed to get the approximated solution 
of (10). Then the following transformation gives the 
final approximated solution of integral equation 

               [   )             (                        (19) 

The illustrative examples shown in the next section 
demonstrate more details of the proposed method in 
performance. 
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IV. NUMERICAL EXPERIMENTS 

 In this section, we implement some examples to 
illustrate the achievements by the propose method. 
We often consider only 10 significant digits and 

       for solving the following test problems. Also, 
the programming is performed by Maple 16. The 
numerical experiments shows the simplicity and 
accuracy of the method. Note that solving the integral 
equations on unbounded domain are naturally 
complicated by using the numerical methods. In 
addition, the analytical methods often impose some 
restrictions on kernel of the integral. It seems the 
presented method can be considered in the research 
involving the infinite integral equation. 

Example 1. [5] Let     and   

 ( )             (   )                  ( )           
(20) 

with the exact solution  ( )    . Due to the (11) we 
reform the integral equation as follows 

 (   )  
 

 
   (   )               ( )   (   )      

Corresponding to (7) and (9) in the presented 
algorithm for integral equation (17), we have two 
algebraic equations as 

 ( )  (   )    
  (   )       ( )

 
     

 ( )  (   )    
 

 
 (               

 

 
 (   )  

                      (   )               ( ))   (   )       

Using the different well-known methods for solving the 
obtained system containing two unknowns   and  ( ) 
gives 

 ( )                                   

Hence, according to (18) we have 

 ( )   (   )                                             

which means 

 ( )                                                        (21) 

The exact and approximated solutions and absolute 
error function are illustrated in Figure 1. We emphasize 
the number of significant digits for solving this problem 
was considered 10. The experiment for 20 digits gives 
the following answer 

 ( )                                                      (22) 

Obviously, the obtained solution is semi-analytic and 
the accuracy of IMVM depends on the accuracy of 
applied method for solving the system of algebraic 
equations. 

 

 

 

 Figure 1: Exact and approximated solutions and absolute error 
function for Example 1. 

 

Example 2. [5] Let     and  

 ( )        (   )         
  ( )     

 √ 

 
    

   (23) 

with the exact solution  ( )    . Similarly, we perform 
the algorithm to obtain the following results 

 ( )                                     

and the constructed solution based on (18) and (19) is 
as follows 

 ( )               
   

The exact and approximated solutions and absolute 
error function are shown in Figure 2. 
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Figure 2: Exact and approximated solutions and absolute error 
function for Example 2. 

Example 3. Let     and  

 (   )  
 

              ( )                                            (24)  

 where  ( )  is compatible with the exact solution  

 ( )       . Similarly, we obtain the following values  

 ( )                                     

 So, the approximated solution based on (18) and (19) 
is as follows  

 ( )                    

 with considering 64 significant digits. The exact and 
approximated solutions and absolute error function are 
shown in Figure 3.   

 

 

Figure 3: Exact and approximated solutions and absolute error 
function for Example 3. 

 

Example 4. Let     and  

 (   )  
 

              ( )                                  (25) 

 where  ( )  is compatible with the exact solution 
 ( )        ( ). The answer of obtained system of 
algebraic equations is as follows  

 ( )                                        

 with considering 64 significant digits. Thus the 
approximated solution based on (18) and (19) will be 
as follows  

 ( )        ( )                

 The exact and approximated solutions and absolute 
error function are shown in Figure 4.   
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Figure 4: Exact and approximated solutions and absolute error 
function for Example 4. 

 

Example 5. Let     and  

    (   )  
 

       (     )
        

    ( )  
 

       
 

  
 

  (√       )

(     )√     
       

     ( )      

 with the exact solution  ( )  
 

    . The answer of 

obtained system of algebraic equations is as follows  

 ( )                                        

 with considering 10 significant digits. Thus the 
approximated solution based on (18) and (19) will be 
as follows  

  ( )  
 

     
 

  

 (√       )

(     )√     
 

           

                
  

 

 The exact and approximated solutions and absolute 
error function are shown in Figure 5.   

 

 
Figure 5: Exact and approximated solutions and absolute error 
function for Example 5. 

 

 

V. CONCLUSION 

 The demonstrated examples in previous section imply 
that method is fast, simple and accurate with semi-
analytical solution. The large amount of problem 
involving semi-infinite domain can be solved by the 
presented method. We have to emphasize the 
described transformation (11) is not only valid mapping 
from semi-infinite domain but also the problems 
defined on infinite domain (    ) are candidate for 
this method with feasible transformation. Although 
there is an ambiguity about the end points of interval, 
the proposed method can not be waived as a powerful 
tool for solving some infinite integral equations. The 
clarification about the end points is the case study for 
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further research which can avoid to unexpected 
behavior of approximated solution.  
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