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Abstract— In this study dimensionless free 

axial vibration analysis of an elastically supported 
beam is made. The supports are modeled by 
elastic translational springs. The frequency values 
for the first three vibration modes of the beam are 
obtained for various values of spring constants 
and presented in the tables. Three I-profile beams 
are chosen for the numerical analysis. The 
frequency values for the spring constants of zero 
and infinity are also compared, respectively, with 
the ones of free, fixed and cantilever beams and 
nearly the exact values are obtained with 
negligible error percentages. 
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I.  INTRODUCTION 

In practice, the representation of a beam by a 
discrete model is an idealized model; however, in fact, 
beams have continuously distributed mass and 
elasticity. Mostly, especially for the axially vibration, 
beams are modeled as continuous systems having 
infinite number of degreed of freedom [1-8]. 

In this study, the dimensionless equation of motion 
of an axially vibrating beam is obtained and the free 
vibration analysis of an elastically supported axially 
vibrating beam is made. The elastic springs against 
translation are used to model the supports. The 
dimensionless differential equation of motion of the 
axially vibrating beam is solved by separation of 
variables method [9] and the dimensionless 
displacement function is obtained. The dimensionless 
boundary conditions are written for the elastic 
supports. The natural frequencies for the first three 
modes are obtained for the various values of the 
spring constants. The results obtained for the spring 
constant value of zero are compared with the 
frequency values of free beam whereas the ones for 
the spring constant value of infinity are compared with 
the frequency values of fixed beam. In addition, the 
frequencies obtained for the left end spring constant 
value of infinity and the right end spring constant value 
of zero are compared with the frequency values of 
cantilever beam. 

II. EQUATION OF MOTION FOR AN AXIALLY VIBRATING 

BEAM 

A. Dimensional Equation of Motion 

An axially vibrating beam, given in Fig. 1, with the 
distributed mass m, the length L, the modulus of 
elasticity E, the cross-section area A and the axial 
rigidity AE has a dimensional differential equation of 
motion for free vibration as [10] 

 
       

    
 

  

 
       

             (1) 

where u(x,t) is the displacement function of the beam 
in terms of both displacement x and time t. Application 
of the separation of variables method to (1) as in the 
form of (2) is commonly used in vibration analysis of 
beams. 

                                            (2) 

In (2), X(x) is the eigenfunction named as shape 

function, T(t) is time function,   is the eigenvalue of the 
solution named as natural frequency and A, B are the 
integration constants. 

 

Fig. 1. An axially vibrating beam with the distributed mass 
m, the length L, the modulus of elasticity E, the cross-section 
area A and the axial rigidity AE. 

The derivatives used in (1) can, therefore, be written 
as 

        

                                          

                    (3) 

        

     ̈                           

                               (4) 

where (
//
) and (¨) denote the second order derivative 

due to x and t, respectively. Substitution of (3) and (4) 
in (1) gives the governing equation of motion in the 
dimensional form as 
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B. Dimensionless Equation of Motion 

Taking z=x/L as the dimensionless displacement 

variable with x=z.L,  x= z.L and  x
2
= z

2
.L

2
, the 

dimensionless differential equation of motion for axial 
vibration of a beam is obtained from (1) as 

 
       

      
 

  

 
       

      
 
       

    
   

  

 
       

        (6) 

 Substituting the successive differentiations of the 
dimensionless displacement function u(z,t) in (7) 
obtained, again, by using the method of separation of 
variables into (6) give (8) for general solution of 
dimensionless equation of motion. 

                         (7) 

        

   
                      

        

   
  ̈     

                                
               

       
     

  
       

       
     

  
                      (8) 

The characteristic equation and the solution of (8) 
is given as follows as D being d/dz: 

                              (9) 

                                        (10) 

(10) gives the dimensionless shape function of the 
axially vibrating beam due to the dimensionless 
displacement variable, z. Therefore, from (7), the 
dimensionless displacement function of the axially 
vibrating beam has the form of (11). 

                                       (11) 

III. BOUNDARY CONDITIONS 

 

 Fig. 2. Elastically supported beam 

Two boundary conditions have to be written for the 
elastically supported beam in Fig. 2 since two 
integration constants (C1, C2) are obtained in the 
solution of second order differential equation of motion. 
The dimensional boundary conditions written for the 
left and the right ends of axially vibrating beam are 
given, respectively, as [11] 

for x=0 

                                   (12) 

for x=L 

                                    (13) 

where ko and kL are the spring constant values of, 
respectively, the left end and the right end supports; 
N(z,t) being the axial force. Thus, the dimensionless 
boundary conditions for the same ends are obtained 
from (12) and (13) as in (14) and (15). 

for z=0 

         
  

 
                        (14) 

for z=1 

         
  

 
                         (15) 

 If (11) and its derivative are substituted into (14) 
and (15) one gets the following relation between the 
coefficient matrix and the integration constants. 
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 where     is the coefficient matrix,     
    

  
 and 

    
    

  
. For non-trivial solution equating the 

determinant of the coefficient matrix of (16) to zero, as 
in (17), will give the eigenfrequencies of the axially 
vibrating beam with elastic supports. These 
frequencies are computed by a program written by the 
author considering the secant method [12]. 

IV. NUMERICAL ANALYSIS 

 The first three natural frequencies of the axially 
vibrating beam with elastic supports are calculated for 
the dimensionless k0D and kLD values of 0, 10

1
, 10

2
, 

10
3
, ….., 10

9
 and 10

10
, the beam length of L=1 m. and 

the modulus of elasticity of E=2100000 kg/cm
2
. IPB-

100, IPB-300 and IPB-600 profiles are used for 
numerical analysis with the mechanical properties 
given in Table I where h is height, G is weight per 
length, A is cross-section area and AE is axial rigidity 
of the corresponding profile. The distributed mass of 
the beam m is calculated from G/g as g being the 
acceleration of gravity with the value of 981 cm/sn

2
. 

TABLE I.  THE MECHANICAL PROPERTIES OF THE PROFILES USED 

IN THIS STUDY 

Profile h (cm) G (kg/cm) A (cm
2
) AE (kg) 

IPB100 10 0.081 10.3 21630000 

IPB300 30 0.422 53.8 112980000 

IPB600 60 1.22 156 327600000 
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 The frequency values computed due to different 
values of the dimensionless spring constants for the 
both ends are presented in Tables II, III and IV for, 
respectively, IPB-100, IPB-300 and IPB-600. 

TABLE II.  FREQUENCIES OF IPB-100 OBTAINED FOR DIFFERENT 

VALUES OF DIMENSIONLESS SPRING CONSTANTS 

k0D=kLD  1  2  3 

     

 

 
√

  

 
 16079.4107 32158.8214 48237.2320 

0 16079.4107 32158.8213 48237.2320 

10
1
 13450 27165 41290 

10
2
 15765 31530 47296 

10
3
 16048 32095 48142 

10
4
 16077 32153 48229 

10
5
 16079.0891 32158.1781 48237.2672 

10
6
 16079.3785 32158.7570 48237.1355 

10
7
 16079.4074 32158.8149 48237.2223 

10
8
 16079.4103 32158.8207 48237.2310 

10
9
 16079.4106 32158.8212 48237.2319 

10
10

 16079.4107 32158.8213 48237.2319 

10
11

 16079.4107 32158.8213 48237.2320 

     

 

 
√

  

 
 16079.4107 32158.8214 48237.2320 

TABLE III.  FREQUENCIES OF IPB-300 OBTAINED FOR DIFFERENT 

VALUES OF DIMENSIONLESS SPRING CONSTANTS 

k0D=kLD  1  2  3 

     

 

 
√

  

 
 16100.1134 32200.2269 48300.3403 

0 16100.1134 32200.2269 48300.3403 

10
1
 13467 27200 41343 

10
2
 15785 31570 47356 

10
3
 16068 32136 48206 

10
4
 16097 32194 48291 

10
5
 16100 32200 48300 

10
6
 16100.0813 32200.1625 48300.2437 

10
7
 16100.1102 32200.2205 48300.3307 

k0D=kLD  1  2  3 

10
8
 16100.1131 32200.2263 48300.3394 

10
9
 16100.1134 32200.2268 48300.3402 

10
10

 16100.1134 32200.2269 48300.3403 

     

 

 
√

  

 
 16100.1134 32200.2269 48300.3403 

TABLE IV.  FREQUENCIES OF IPB-600 OBTAINED FOR DIFFERENT 

VALUES OF DIMENSIONLESS SPRING CONSTANTS 

k0D=kLD  1  2  3 

     

 

 
√

  

 
 16124.1343 32248.2687 48372.4030 

0 16124.1343 32248.2687 48372.4030 

10
1
 13487 27240 41405 

10
2
 15809 31617 47427 

10
3
 16092 32184 48276 

10
4
 16121 32242 48363 

10
5
 16124 32248 48372 

10
6
 16124.1021 32248.2042 48372.3063 

10
7
 16124.1311 32248.2622 48372.3933 

10
8
 16124.1340 32248.2680 48372.4020 

10
9
 16124.1343 32248.2686 48372.4029 

10
10

 16124.1343 32248.2687 48372.4030 

     

 

 
√

  

 
 16124.1343 32248.2687 48372.4030 

 The frequency values computed due to different 
values of the dimensionless spring constant k0 and 
kL=0 are presented in Tables V, VI and VII for, 
respectively, IPB-100, IPB-300 and IPB-600. 

TABLE V.  FREQUENCIES OF IPB-100 OBTAINED FOR DIFFERENT 

VALUES OF k0D and kLD=0 

kLD=0 and  k0D  1  2  3 

10
1
 7314 22039 36996 

10
2
 7961 23881 39802 

10
3
 8032 24096 40159 

10
4
 8039 24117 40195 

10
5
 8039.6249 24118.8748 40198.1246 
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kLD=0 and  k0D  1  2  3 

10
6
 8039.6973 24119.0919 40198.4864 

10
7
 8039.7045 24119.1136 40198.5226 

10
8
 8039.7053 24119.1157 40198.5262 

10
9
 8039.7053 24119.1160 40198.5266 

   
       

 

 

 
√

  

 
 8039.7053 24119.1160 40198.5266 

TABLE VI.  FREQUENCIES OF IPB-300 OBTAINED FOR DIFFERENT 

VALUES OF k0D and kLD=0 

kLD=0 and  k0D  1  2  3 

10
1
 7323 22067 37043 

10
2
 7971 23912 39853 

10
3
 8043 24127 40211 

10
4
 8050 24148 40247 

10
5
 8050 24150 40250 

10
6
 8050.0487 24150.1460 40250.2434 

10
7
 8050.0559 24150.1678 40250.2796 

10
8
 8050.0567 24150.1699 40250.2832 

10
9
 8050.0567 24150.1701 40250.2836 

   
       

 

 

 
√

  

 
 8050.0567 24150.1702 40250.2836 

TABLE VII.  FREQUENCIES OF IPB-600 OBTAINED FOR 

DIFFERENT VALUES OF k0D and kLD=0 

kLD=0 and  k0D  1  2  3 

10
1
 7334 22100 37099 

10
2
 7983 23947 39913 

10
3
 8055 24163 40271 

10
4
 8062 24184 40307 

10
5
 8062 24186 40310 

10
6
 8062.0591 24186.1773 40310.2955 

10
7
 8062.0664 24186.1991 40310.3318 

10
8
 8062.0671 24186.2013 40310.3354 

10
9
 8062.0672 24186.2015 40310.3358 

kLD=0 and  k0D  1  2  3 

   
       

 

 

 
√

  

 
 8062.0672 24186.2015 40310.3358 

V. CONCLUSIONS 

In this study free longitudinal vibration of an 
elastically supported beam is made using 
dimensionless equation of motion and dimensionless 
boundary conditions. The natural frequency values are 
obtained for different values of spring constants at both 
ends and presented in tables. It can be seen from 
Tables 2, 3, 4 and Tables 6, 7 and 8 that as the spring 
constant values increase through a value of 10

5
 the 

frequency values rapidly increase, however, at the 
value of 10

5
 the frequency values are so close to its 

ideal limit obtained from the frequency equation of 
ideal support condition, being free or fixed. As the 
spring constant value increases from 10

5
 to 

theoretically infinity (practically 10
10 

for both ends 
elastically supported beams and 10

9
 for the beams 

with kLD=0 in this study) the frequency values show 
gentle increase and at the spring constant value that 
represents infinity the frequency value reaches its limit 
value for the considering support. Increasing the height 
of the beam section causes also an increase in 
frequency values for all conditions considered in this 
study. 

The frequencies at the first and the last rows of 
Tables II, III and IV are obtained, respectively, from the 
frequency equations of free and fixed beams which 
have the same frequency equation; and it is seen that 
the same frequency values are obtained for, 
respectively, k0D=kLD=0 and k0D=kLD=10

10
 for all I-

profiles. 

The frequencies at the last rows of Tables V, VI 
and VII are obtained, from the frequency equation of 
cantilever beam; and it is seen that the same 
frequency values are obtained for, respectively, kLD=0 
and k0D=10

9
 for all I-profiles. 
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