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Abstract— In this study dimensionless free
axial vibration analysis of beam with tip masses is
made. The tip masses are modeled by
concentrated masses at both ends of the beam.
The frequency values for the first three vibration
modes of the beam are obtained for various
values of concentrated masses and presented in
the tables. Three I-profile beams are chosen for
the numerical analysis. The frequency values for
the concentrated masses of zero and infinity are
also compared, respectively, with the ones of free,
fixed and cantilever beams and nearly the exact
values are obtained with negligible error
percentages.
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I.  INTRODUCTION

In practice, the representation of a beam by a
discrete model is an idealized model; however, in fact,
beams have continuously distributed mass and
elasticity. Mostly, especially for the axially vibration,
beams are modeled as continuous systems having
infinite number of degreed of freedom [1-8].

In this study, the dimensionless equation of motion
of an axially vibrating beam is obtained and the free
vibration analysis of an axially vibrating beam with tip
masses is made. Two concentrated masses are used
at both ends of the beam to model the tip masses. The
dimensionless differential equation of motion of the
axially vibrating beam is solved by separation of
variables method [9] and the dimensionless
displacement function is obtained. The dimensionless
boundary conditions are written for the tip masses at
both ends. The natural frequencies for the first three
modes are obtained for the various values of the
concentrated masses. The results obtained for the
concentrated mass value of zero at both ends are
compared with the frequency values of free beam
whereas the ones for the concentrated mass value of
infinity at both ends are compared with the frequency
values of fixed beam. In addition, the frequencies
obtained for the left end concentrated mass value of
infinity and the right end concentrated mass value of
zero are compared with the frequency values of
cantilever beam.

II. EQUATION OF MOTION FOR AN AXIALLY VIBRATING
BEAM

A. Dimensional Equation of Motion

An axially vibrating beam, given in Fig. 1, with the
distributed mass m, the length L, the modulus of
elasticity E, the cross-section area A and the axial
rigidity AE has a dimensional differential equation of
motion for free vibration as [10]

azu(x,t) _ iﬁzu(x,t) _

" = 1)

ot2

0x?
where u(x,t) is the displacement function of the beam
in terms of both displacement x and time t. Application
of the separation of variables method to (1) as in the
form of (2) is commonly used in vibration analysis of
beams.

u(x, t) = X(x).T(t) = X(x).[A.sin(wt) + B.cos(wt)] (2)

In (2), X(x) is the eigenfunction named as shape
function, T(t) is time function, o is the eigenvalue of the
solution named as natural frequency and A, B are the
integration constants.
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Fig. 1. An axially vibrating beam with the distributed mass
m, the length L, the modulus of elasticity E, the cross-section
area A and the axial rigidity AE.

The derivatives used in (1) can, therefore, be written
as

[:;Zg’t) =u"(x,t) = X" (x).[A.sin(at) + B.cos(wt)] =
X"(0).T() @)
;L)zm =ii(x,t) = X(x). (—o*)[A.sin(wt) +

B.cos(a)it)] = —a?. X(x).T(t) (4)

where (”) and (") denote the second order derivative
due to x and t, respectively. Substitution of (3) and (4)
in (1) gives the governing equation of motion in the
dimensional form as

mao?

X"(0). T+~

X().T(t) = 0

X' +22X0) =0 0<x<L )
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B. Dimensionless Equation of Motion

Taking z=x/L as the dimensionless displacement
variable with x=z.L, ox=dz.L and ox°=oz°.L% the
dimensionless differential equation of motion for axial
vibration of a beam is obtained from (1) as

62u(z,t) m 62u(z,t) _ 62u(z,t) mL2 azu(z,t) (6)
0z212  AE ot2 oz2 AE  ot?

Substituting the successive differentiations of the
dimensionless displacement function u(zt) in (7)
obtained, again, by using the method of separation of
variables into (6) give (8) for general solution of
dimensionless equation of maotion.

u(z,t) =Z(2).T(t) @)
Fu(z,t) o, AT
—Qpz - u''(z,t) =72"(2).T(t)
éz )
% =1i(zt)
= Z(2). (—a*)[A.sin(wt) + B.cos(wt)]
=—a?.2(2).T(t)
ml?
2@+ 2(2) = 0
for a? = m:;aﬁ Z"(z2)+a%Z(z) =0 (8)

The characteristic equation and the solution of (8)
is given as follows as D being d/dz:
D*+a*=0 - D,,=tia 9)
Z(z) = Cy.sin(az) + Cy.cos(az) 0<z<1 (20)

(10) gives the dimensionless shape function of the
axially vibrating beam due to the dimensionless
displacement variable, z. Therefore, from (7), the
dimensionless displacement function of the axially
vibrating beam has the form of (11).

u(z, t) = [C;.sin(az) + C,.cos(az)]. T(t) (11)

I1l. BOUNDARY CONDITIONS

My

m, L., AE x=L

Fig. 2. Axially vibrating beam with tip masses

Two boundary conditions have to be written for the
concentrated masses at both ends of the beam in Fig.
2 since two integration constants (C,, C,) are obtained
in the solution of second order differential equation of
motion. The dimensional boundary conditions written
for the left and the right ends of axially vibrating beam
with two concentrated masses are given, respectively,

Nx=L,t)=AEu'(x =L,t) = —M,.i(x =L, t) (13)

where M, and M_ are the concentrated mass values of,
respectively, the left end and the right end supports;
N(z,t) being the axial force. Thus, the dimensionless
boundary conditions for the same ends are obtained
from (12) and (13) as in (14) and (15).

for z=0
Nz =0,t) = Zu'(z = 0,t) = Mo.ii(z = 0,1) (14)
for z=1

BVEz=1t=-M.i@z=1t) (15

L

N(z =1,t) =

If (11) and its derivative are substituted into (14)
and (15) one gets the following relation between the
coefficient matrix and the integration constants.

o< Mgyp. w?

[[oc. cos(x) — M;p. w?.sin(x)]  [—ec. sin(ec) — My p. w?. cos()]

{e}=10

k11 klZ] {Cl} — 0 {Cl} —
b e e =0 - wi{gl=o (16)
kll k12
|kl kyy Ky (17)
where [k] is the coefficient matrix, My, = % and
sz%. For non-trivial solution equating the

determinant of the coefficient matrix of (16) to zero, as
in (17), will give the eigenfrequencies of the axially
vibrating beam with tip masses. These frequencies are
computed by a program written by the author
considering the secant method [12].

IV. NUMERICAL ANALYSIS

The first three natural frequencies of the axially
vibrating beam with concentrated masses at both
ends are calculated for the dimensionless Mgy, and
M., values of 107, 10°, 10°, 10, 10, 10?, 10*, 10°
and 10", the beam length of L=1 m. and the modulus
of elasticity of E=2100000 kg/cmz. IPB-100, IPB-300
and IPB-600 profiles are used for numerical analysis
with the mechanical properties given in Table | where
h is height, G is weight per length, A is cross-section
area and AE is axial rigidity of the corresponding
profile. The distributed mass of the beam m is
calculated from G/g as g being the acceleration of
gravity with the value of 981 cm/sn®.

TABLE I. THE MECHANICAL PROPERTIES OF THE PROFILES USED
IN THIS STUDY

as [11]
Profile h (cm) G (kg/cm) A (cm?) AE (kg)
for x=0
N(x = 0,t) = AEw(x = 0,t) = My.ii(x = 0,¢) (12) IPB100 10 0.081 10.3 21630000
for x=L IPB300 30 0.422 53.8 112980000
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Profile h (cm) G (kg/cm) A (cm? AE (kg) Mop=M_p o @ @s
IPB600 60 1.22 156 327600000 10° 16100.1136 | 32200.2270 | 48300.3404
The frequency values computed due to different 10 16100.1135 | 32200.2269 | 48300.3403
values of the dimensionless concentrated masses for
the both ends are presented in Tables Il, lll and IV for, T |AE
respectively, IPB-100, IPB-300 and IPB-600. w=mp |- | 16100.1134 1 32200.2269 | 48300.3403
TABLE Il. FREQUENCIES OF IPB-100 OBTAINED FOR DIFFERENT
VALUES OF DIMENSIONLESS CONCENTRATED MASSES TABLE IV. FREQUENCIES OF IPB-600 OBTAINED FOR DIFFERENT
VALUES OF DIMENSIONLESS CONCENTRATED MASSES
Mopo=M_p an (4273 an
Mop=M_p w1 (7] a3
wi:nif F_E 16079.4107 | 32158.8214 | 48237.2320
Lym wi=ni% \[E 16124.1343 | 32248.2687 | 48372.4030
m
0 16079.4107 | 32158.8213 | 48237.2320
0 16124.1344 | 32248.2687 | 48372.4030
107 17235 32769 48650
107 17277 32857 48783
10° 16203 32221 48280
10° 16248 32311 48414
10° 16092 32166 48243
10° 16137 32255 48377
10* 16081 32160 48239
10* 16126 32249 48373
107 16079.5350 | 32158.8835 | 48238.2734
10° 16124.2584 | 32248.3307 | 48372.4443
107 16079.4231 | 32158.8275 | 48238.2361
107 16124.1467 | 32248.2749 | 48372.4071
10 16079.4119 | 32158.8219 | 48238.2324
10™ 16124.1356 | 32248.2693 | 48372.4034
10° 16079.4108 | 32158.8214 | 48238.2320
10° 16124.1345 | 32248.2687 | 48372.4030
10 16079.4107 | 32158.8213 | 48237.2320
10" 16124.1344 | 32248.2687 | 48372.4030
w,-=niz \/E 16079.4107 | 32158.8214 | 48237.2320 E
Lym wi=n,—% j; 16124.1343 | 32248.2687 | 48372.4030

TABLE lll. FREQUENCIES OF IP
VALUES OF DIMENSIONLESS CONCENTRATED MASSES

B-300 OBTAINED FOR DIFFERENT

The frequency values computed due to different

values of the dimensionless concentrated mass Mgp

Mop=Muo D @2 s and M =0 are presented in Tables V, VI and VIl for,
respectively, IPB-100, IPB-300 and IPB-600.
w; = ni% E 16100.1134 32200.2269 48300.3403 TABLE V. FREQUENCIES OF IPB-100 OBTAINED FOR DIFFERENT
ym VALUES oF Mgp and M, p=0
0 16100.1135 | 32200.2269 | 48300.3403 M.5=0 and Mop o @ @

107 17255 32810 48711 107 9120 24526 40446

10° 16224 32263 48342 10 8163 24161 40224

10-5 16113 32207 48305 10-5 8053 24124 40202
10° 16100.1259 | 32200.2331 | 4B300.3445 10? 8039.7178 | 24119.1201 | 40198.5291
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i

M. p=0 and Mop [ (2} [24]
10° 8039.7055 24119.1160 40198.5267
10" 8039.7053 24119.1160 40198.5266
8039.7053 24119.1160 40198.5266

_(2n,-—1)11' AE
@i = 2 L., m

TABLE VI. FREQUENCIES OF IPB-300 OBTAINED FOR DIFFERENT
VaLUEs oF Mgp and M, p=0

i

M. p=0 and Mop o [22) [24]
107 9130 24557 40498
10° 8173 24192 40276
10° 8063 24155 40253
10" 8052 24151 40251
10° 8050.1810 | 24150.2116 | 40250.3085
10? 8050.0692 | 24150.1743 | 40250.2861
10" 8050.0580 | 24150.1706 | 40250.2839
10° 8050.0569 | 24150.1702 | 40250.2836
10 8050.0567 | 24150.1702 | 40250.2836
8050.0567 | 24150.1702 | 40250.2836

_@n;-1)m |AE
=T Ldm

V. CONCLUSIONS

In this study free longitudinal vibration of a beam
carrying two concentrated masses at both ends is
made using dimensionless equation of motion and
dimensionless boundary conditions. The natural
frequency values are obtained for different values of
concentrated masses at both ends and presented in
tables. It can be seen from Tables 2, 3, 4 and Tables
6, 7 and 8 that as the concentrated mass values
increase through a value of 10™ the frequency values
rapidly decrease, however, at the value of 10 the
frequency values are so close to its ideal limit obtained
from the frequency equation of ideal support condition,
being free, fixed or cantilever. As the concentrated
mass value increases from 10™ to theoretically infinity
(practically 10" "this study) the frequency values show
gentle decrease and at the concentrated mass value
that represents infinity the frequency value reaches its
limit value for the considering support. Increasing the
height of the beam section causes also an increase in
frequency values for all conditions considered in this
study.

The frequencies at the first and the last rows of
Tables Il, Il and IV are obtained, respectively, from the
frequency equations of free and fixed beams which
have the same frequency equation; and it is seen that
the same frequency values are obtained for,
respectively, Mop=Mp=0 and Mgp=M p=10" for all I-
profiles.

The frequencies at the last rows of Tables V, VI
and VIl are obtained, from the frequency equation of
cantilever beam; and it is seen that the same

5 TABLE\)’”' F;EQU;’;']‘SEI\SA O_FO IPB-600  OBTAINED  FOR frequency values are obtained for, respectively, M =0
IFFERENT VALUES OFMop Lo~ and Mop=10" for all I-profiles.
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