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Abstract— In this study dimensionless free 

axial vibration analysis of beam with tip masses is 
made. The tip masses are modeled by 
concentrated masses at both ends of the beam. 
The frequency values for the first three vibration 
modes of the beam are obtained for various 
values of concentrated masses and presented in 
the tables. Three I-profile beams are chosen for 
the numerical analysis. The frequency values for 
the concentrated masses of zero and infinity are 
also compared, respectively, with the ones of free, 
fixed and cantilever beams and nearly the exact 
values are obtained with negligible error 
percentages. 
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I.  INTRODUCTION 

In practice, the representation of a beam by a 
discrete model is an idealized model; however, in fact, 
beams have continuously distributed mass and 
elasticity. Mostly, especially for the axially vibration, 
beams are modeled as continuous systems having 
infinite number of degreed of freedom [1-8]. 

In this study, the dimensionless equation of motion 
of an axially vibrating beam is obtained and the free 
vibration analysis of an axially vibrating beam with tip 
masses is made. Two concentrated masses are used 
at both ends of the beam to model the tip masses. The 
dimensionless differential equation of motion of the 
axially vibrating beam is solved by separation of 
variables method [9] and the dimensionless 
displacement function is obtained. The dimensionless 
boundary conditions are written for the tip masses at 
both ends. The natural frequencies for the first three 
modes are obtained for the various values of the 
concentrated masses. The results obtained for the 
concentrated mass value of zero at both ends are 
compared with the frequency values of free beam 
whereas the ones for the concentrated mass value of 
infinity at both ends are compared with the frequency 
values of fixed beam. In addition, the frequencies 
obtained for the left end concentrated mass value of 
infinity and the right end concentrated mass value of 
zero are compared with the frequency values of 
cantilever beam. 

II. EQUATION OF MOTION FOR AN AXIALLY VIBRATING 

BEAM 

A. Dimensional Equation of Motion 

An axially vibrating beam, given in Fig. 1, with the 
distributed mass m, the length L, the modulus of 
elasticity E, the cross-section area A and the axial 
rigidity AE has a dimensional differential equation of 
motion for free vibration as [10] 

 
       

    
 

  

 
       

             (1) 

where u(x,t) is the displacement function of the beam 
in terms of both displacement x and time t. Application 
of the separation of variables method to (1) as in the 
form of (2) is commonly used in vibration analysis of 
beams. 

                                            (2) 

In (2), X(x) is the eigenfunction named as shape 

function, T(t) is time function,   is the eigenvalue of the 
solution named as natural frequency and A, B are the 
integration constants. 

 

Fig. 1. An axially vibrating beam with the distributed mass 
m, the length L, the modulus of elasticity E, the cross-section 
area A and the axial rigidity AE. 

The derivatives used in (1) can, therefore, be written 
as 

        

                                          

                    (3) 

        

     ̈                           

                               (4) 

where (
//
) and (¨) denote the second order derivative 

due to x and t, respectively. Substitution of (3) and (4) 
in (1) gives the governing equation of motion in the 
dimensional form as 
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B. Dimensionless Equation of Motion 

Taking z=x/L as the dimensionless displacement 

variable with x=z.L,  x= z.L and  x
2
= z

2
.L

2
, the 

dimensionless differential equation of motion for axial 
vibration of a beam is obtained from (1) as 

 
       

      
 

  

 
       

      
 
       

    
   

  

 
       

        (6) 

 Substituting the successive differentiations of the 
dimensionless displacement function u(z,t) in (7) 
obtained, again, by using the method of separation of 
variables into (6) give (8) for general solution of 
dimensionless equation of motion. 

                         (7) 
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                      (8) 

The characteristic equation and the solution of (8) 
is given as follows as D being d/dz: 

                              (9) 

                                        (10) 

(10) gives the dimensionless shape function of the 
axially vibrating beam due to the dimensionless 
displacement variable, z. Therefore, from (7), the 
dimensionless displacement function of the axially 
vibrating beam has the form of (11). 

                                       (11) 

III. BOUNDARY CONDITIONS 

 

 Fig. 2. Axially vibrating beam with tip masses 

Two boundary conditions have to be written for the 
concentrated masses at both ends of the beam in Fig. 
2 since two integration constants (C1, C2) are obtained 
in the solution of second order differential equation of 
motion. The dimensional boundary conditions written 
for the left and the right ends of axially vibrating beam 
with two concentrated masses are given, respectively, 
as [11] 

for x=0 

                         ̈          (12) 

for x=L 

                          ̈          (13) 

where Mo and ML are the concentrated mass values of, 
respectively, the left end and the right end supports; 
N(z,t) being the axial force. Thus, the dimensionless 
boundary conditions for the same ends are obtained 
from (12) and (13) as in (14) and (15). 

for z=0 

         
  

 
              ̈          (14) 

for z=1 

         
  

 
               ̈          (15) 

 If (11) and its derivative are substituted into (14) 
and (15) one gets the following relation between the 
coefficient matrix and the integration constants. 

[
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 where     is the coefficient matrix,     
    

  
 and 

    
    

  
. For non-trivial solution equating the 

determinant of the coefficient matrix of (16) to zero, as 
in (17), will give the eigenfrequencies of the axially 
vibrating beam with tip masses. These frequencies are 
computed by a program written by the author 
considering the secant method [12]. 

IV. NUMERICAL ANALYSIS 

 The first three natural frequencies of the axially 
vibrating beam with concentrated masses at both 
ends are calculated for the dimensionless M0D and 
MLD values of 10

-7
, 10

-6
, 10

-5
, 10

-4
, 10

-3
, 10

-2
, 10

-1
, 10

0
 

and 10
1
, the beam length of L=1 m. and the modulus 

of elasticity of E=2100000 kg/cm
2
. IPB-100, IPB-300 

and IPB-600 profiles are used for numerical analysis 
with the mechanical properties given in Table I where 
h is height, G is weight per length, A is cross-section 
area and AE is axial rigidity of the corresponding 
profile. The distributed mass of the beam m is 
calculated from G/g as g being the acceleration of 
gravity with the value of 981 cm/sn

2
. 

TABLE I.  THE MECHANICAL PROPERTIES OF THE PROFILES USED 

IN THIS STUDY 

Profile h (cm) G (kg/cm) A (cm
2
) AE (kg) 

IPB100 10 0.081 10.3 21630000 

IPB300 30 0.422 53.8 112980000 
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Profile h (cm) G (kg/cm) A (cm
2
) AE (kg) 

IPB600 60 1.22 156 327600000 

 The frequency values computed due to different 
values of the dimensionless concentrated masses for 
the both ends are presented in Tables II, III and IV for, 
respectively, IPB-100, IPB-300 and IPB-600. 

TABLE II.  FREQUENCIES OF IPB-100 OBTAINED FOR DIFFERENT 

VALUES OF DIMENSIONLESS CONCENTRATED MASSES 

M0D=MLD  1  2  3 

     

 

 
√

  

 
 16079.4107 32158.8214 48237.2320 

0 16079.4107 32158.8213 48237.2320 

10
-7
 17235 32769 48650 

10
-6
 16203 32221 48280 

10
-5
 16092 32166 48243 

10
-4
 16081 32160 48239 

10
-3
 16079.5350 32158.8835 48238.2734 

10
-2
 16079.4231 32158.8275 48238.2361 

10
-1
 16079.4119 32158.8219 48238.2324 

10
0
 16079.4108 32158.8214 48238.2320 

10
1
 16079.4107 32158.8213 48237.2320 

     

 

 
√

  

 
 16079.4107 32158.8214 48237.2320 

TABLE III.  FREQUENCIES OF IPB-300 OBTAINED FOR DIFFERENT 

VALUES OF DIMENSIONLESS CONCENTRATED MASSES 

M0D=MLD  1  2  3 

     

 

 
√

  

 
 16100.1134 32200.2269 48300.3403 

0 16100.1135 32200.2269 48300.3403 

10
-7
 17255 32810 48711 

10
-6
 16224 32263 48342 

10
-5
 16113 32207 48305 

10
-4
 16102 32201 48301 

10
-3
 16100.2377 32200.2890 48300.3817 

10
-2
 16100.1259 32200.2331 48300.3445 

10
-1
 16100.1147 32200.2275 48300.3408 

M0D=MLD  1  2  3 

10
0
 16100.1136 32200.2270 48300.3404 

10
1
 16100.1135 32200.2269 48300.3403 

     

 

 
√

  

 
 16100.1134 32200.2269 48300.3403 

TABLE IV.  FREQUENCIES OF IPB-600 OBTAINED FOR DIFFERENT 

VALUES OF DIMENSIONLESS CONCENTRATED MASSES 

M0D=MLD  1  2  3 

     

 

 
√

  

 
 16124.1343 32248.2687 48372.4030 

0 16124.1344 32248.2687 48372.4030 

10
-7
 17277 32857 48783 

10
-6
 16248 32311 48414 

10
-5
 16137 32255 48377 

10
-4
 16126 32249 48373 

10
-3
 16124.2584 32248.3307 48372.4443 

10
-2
 16124.1467 32248.2749 48372.4071 

10
-1
 16124.1356 32248.2693 48372.4034 

10
0
 16124.1345 32248.2687 48372.4030 

10
1
 16124.1344 32248.2687 48372.4030 

     

 

 
√

  

 
 16124.1343 32248.2687 48372.4030 

 The frequency values computed due to different 
values of the dimensionless concentrated mass M0D 
and MLD=0 are presented in Tables V, VI and VII for, 
respectively, IPB-100, IPB-300 and IPB-600. 

TABLE V.  FREQUENCIES OF IPB-100 OBTAINED FOR DIFFERENT 

VALUES OF M0D and MLD=0 

MLD=0 and M0D  1  2  3 

10
-7
 9120 24526 40446 

10
-6
 8163 24161 40224 

10
-5
 8053 24124 40202 

10
-4
 8041 24120 40199 

10
-3
 8039.8297 24119.1574 40198.5515 

10
-2
 8039.7178 24119.1201 40198.5291 

10
-1
 8039.7066 24119.1164 40198.5269 
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MLD=0 and M0D  1  2  3 

10
0
 8039.7055 24119.1160 40198.5267 

10
1
 8039.7053 24119.1160 40198.5266 

   
       

 

 

 
√

  

 
 8039.7053 24119.1160 40198.5266 

TABLE VI.  FREQUENCIES OF IPB-300 OBTAINED FOR DIFFERENT 

VALUES OF M0D and MLD=0 

MLD=0 and M0D  1  2  3 

10
-7
 9130 24557 40498 

10
-6
 8173 24192 40276 

10
-5
 8063 24155 40253 

10
-4
 8052 24151 40251 

10
-3
 8050.1810 24150.2116 40250.3085 

10
-2
 8050.0692 24150.1743 40250.2861 

10
-1
 8050.0580 24150.1706 40250.2839 

10
0
 8050.0569 24150.1702 40250.2836 

10
1
 8050.0567 24150.1702 40250.2836 

   
       

 

 

 
√

  

 
 8050.0567 24150.1702 40250.2836 

TABLE VII.  FREQUENCIES OF IPB-600 OBTAINED FOR 

DIFFERENT VALUES OFM0D and MLD=0 

MLD=0 and M0D  1  2  3 

10
-7
 9141 24592 40557 

10
-6
 8185 24228 40336 

10
-5
 8075 24191 40313 

10
-4
 8064 24187 40311 

10
-3
 8062.1912 24186.2429 40310.3606 

10
-2
 8062.0796 24186.2056 40310.3383 

10
-1
 8062.0684 24186.2019 40310.3361 

10
0
 8062.0673 24186.2015 40310.3359 

10
1
 8062.0672 24186.2015 40310.3358 

   
       

 

 

 
√

  

 
 8062.0672 24186.2015 40310.3358 

 

V. CONCLUSIONS 

In this study free longitudinal vibration of a beam 
carrying two concentrated masses at both ends is 
made using dimensionless equation of motion and 
dimensionless boundary conditions. The natural 
frequency values are obtained for different values of 
concentrated masses at both ends and presented in 
tables. It can be seen from Tables 2, 3, 4 and Tables 
6, 7 and 8 that as the concentrated mass values 
increase through a value of 10

-4
 the frequency values 

rapidly decrease, however, at the value of 10
-4

 the 
frequency values are so close to its ideal limit obtained 
from the frequency equation of ideal support condition, 
being free, fixed or cantilever. As the concentrated 
mass value increases from 10

-4
 to theoretically infinity 

(practically 10
1 in 

this study) the frequency values show 
gentle decrease and at the concentrated mass value 
that represents infinity the frequency value reaches its 
limit value for the considering support. Increasing the 
height of the beam section causes also an increase in 
frequency values for all conditions considered in this 
study. 

The frequencies at the first and the last rows of 
Tables II, III and IV are obtained, respectively, from the 
frequency equations of free and fixed beams which 
have the same frequency equation; and it is seen that 
the same frequency values are obtained for, 
respectively, M0D=MLD=0 and M0D=MLD=10

1
 for all I-

profiles. 

The frequencies at the last rows of Tables V, VI 
and VII are obtained, from the frequency equation of 
cantilever beam; and it is seen that the same 
frequency values are obtained for, respectively, MLD=0 
and M0D=10

1
 for all I-profiles. 
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